Publications by authors named "Matthias Can"

Phase-change memory (PCM) technology has recently attracted a vivid interest for neuromorphic applications, in-memory computing, and photonic integration due to the tunable refractive index and electrical conductivity between the amorphous and crystalline material states. Despite this, it is increasingly challenging to scale down the device dimensions of conventionally sputtered PCM memory arrays, restricting the implementation of PCM technology in mass applications such as consumer electronics. Here, we report the synthesis and structural study of sub-10 nm Cu-Ge-Te (CGT) nanoparticles as suitable candidates for low-cost and ultrasmall PCM devices.

View Article and Find Full Text PDF

A structural change between amorphous and crystalline phase provides a basis for reliable and modular photonic and electronic devices, such as nonvolatile memory, beam steerers, solid-state reflective displays, or mid-IR antennas. In this paper, we leverage the benefits of liquid-based synthesis to access phase-change memory tellurides in the form of colloidally stable quantum dots. We report a library of ternary MGeTe colloids (where M is Sn, Bi, Pb, In, Co, Ag) and then showcase the phase, composition, and size tunability for Sn-Ge-Te quantum dots.

View Article and Find Full Text PDF