New energy systems such as all-solid-state battery (ASSB) technology are becoming increasingly important today. Recently, researchers have been investigating the transition from the lab-scale production of ASSB components to a larger scale. Poly(ethylene oxide) (PEO) is a promising candidate for the large-scale production of polymer-based solid electrolytes (SPEs) because it offers many processing options.
View Article and Find Full Text PDFWhile some promising materials for all-solid-state batteries are already extensively investigated in a lab scale, the transferability to mass production is still a limiting factor. β-lithium thiophosphate (β-LiPS) has good ionic conductivity and can be synthesized wet-chemically, which opens up the possibility for scale-up. For safe upscaling, the enthalpies of the synthesis steps need to be examined in order to handle exothermic and endothermic processes.
View Article and Find Full Text PDFMetal foam inserts are known for their high potential for weight and vibration reduction in composite gear wheels. However, most metal foams do not meet the strength requirements mandatory for the transfer of sufficiently high levels of torque by the gears. Syntactic iron and steel foams offer higher strength levels than conventional two-phase metal foams, thus making them optimum candidates for such inserts.
View Article and Find Full Text PDFThere is currently a large demand for aluminum components to measure the mechanical and thermal loads to which they are subjected. With structural health monitoring, components in planes, vehicles, or bridges can monitor critical loads and potentially prevent an impending fatigue failure. Externally attached sensors need a structural model to obtain knowledge of the mechanical load at the point of interest, whereas embedded sensors can be used for direct measurement at the point of interest.
View Article and Find Full Text PDFLiLaZrO (LLZO) and related compounds are considered as promising candidates for future all-solid-state Li-ion battery applications. Still, the processing of those materials into thin membranes with the right stoichiometry and crystal structure is difficult and laborious. The sensitivity of the Li-ion conductive garnets against moisture and the associated Li/H cation exchange makes their processing even more difficult.
View Article and Find Full Text PDFMetal-assisted chemical etching (MACE) provides a versatile way to synthesize silicon nanowires (SiNW) of different morphologies. MACE was used to synthesize oxide-free porous and nonporous SiNW for use as anodes for lithium-ion batteries. To improve their processing behavior, the SiNW were functionalized using acrylic acid.
View Article and Find Full Text PDFIntegration of sensors into various kinds of products and machines provides access to in-depth usage information as basis for product optimization. Presently, this large potential for more user-friendly and efficient products is not being realized because (a) sensor integration and thus usage information is not available on a large scale and (b) product optimization requires considerable efforts in terms of manpower and adaptation of production equipment. However, with the advent of cloud-based services and highly flexible additive manufacturing techniques, these obstacles are currently crumbling away at rapid pace.
View Article and Find Full Text PDFPrism- and raspberry-like ZnO nanoparticles and ZnO-In(OH)(3) nanocomposites were prepared by template free hydrothermal method. XRD investigations and microscopic studies showed that pill-like In(OH)(3) particles with body-centered cubic crystal structure formed on the surface of ZnO nanoparticles resulting in increased specific surface area. TEM-EDX mapping images demonstrated that not only nanocomposite formation took place in the course of the synthesis, but zinc ions were also built into the crystal lattice of the In(OH)(3).
View Article and Find Full Text PDFThe work described in this paper demonstrates that very small protein and DNA structures can be applied to various substrates without denaturation using aerosol printing technology. This technology allows high-resolution deposition of various nanoscaled metal and biological suspensions. Before printing, metal and biological suspensions were formulated and then nebulized to form an aerosol which is aerodynamically focused on the printing module of the system in order to achieve precise structuring of the nanoscale material on a substrate.
View Article and Find Full Text PDF