Publications by authors named "Matthias Brandt"

Understanding how biophysical and biochemical microenvironmental cues together influence the regenerative activities of muscle stem cells and their progeny is crucial in strategizing remedies for pathological dysregulation of these cues in aging and disease. In this study, we investigated the cell-level influences of extracellular matrix (ECM) ligands and culture substrate stiffness on primary human myoblast contractility and proliferation within 16 h of plating and found that tethered fibronectin led to stronger stiffness-dependent responses compared to laminin and collagen. A proteome-wide analysis further uncovered cell metabolism, cytoskeletal and nuclear component regulation distinctions between cells cultured on soft and stiff substrates.

View Article and Find Full Text PDF

Mechanisms keeping leukocytes distant of local inflammatory processes in a resting state despite systemic release of inflammatory triggers are a pivotal requirement for avoidance of overwhelming inflammation but are ill defined. Dimers of the alarmin S100A8/S100A9 activate Toll-like receptor-4 (TLR4) but extracellular calcium concentrations induce S100A8/S100A9-tetramers preventing TLR4-binding and limiting their inflammatory activity. So far, only antimicrobial functions of released S100A8/S100A9-tetramers (calprotectin) are described.

View Article and Find Full Text PDF

Endothelial cells form the inner layer of blood vessels, making them the first barrier between the blood and interstitial tissues; thus endothelial cells play a crucial role in inflammation. In the inflammatory response, one important element is the pro-inflammatory cytokine tumor necrosis factor-α (TNF-α). While other pro-inflammatory agents like thrombin and histamine induce acute but transient changes in endothelial cells, which have been well studied biologically as well as mechanically, TNF-α is primarily known for its sustained effects on permeability and leukocyte recruitment.

View Article and Find Full Text PDF

Podosomes are mechanosensitive protrusive actin structures that are prominent in myeloid cells, and they have been linked to vascular extravasation. Recent studies have suggested that podosomes are hierarchically organized and have coordinated dynamics on the cell scale, which implies that the local force generation by single podosomes can be different from their global combined action. Complementary to previous studies focusing on individual podosomes, here we investigated the cell-wide force generation of podosome-bearing ER-Hoxb8 monocytes.

View Article and Find Full Text PDF

Contact inhibition of locomotion (CIL) is a process that regulates cell motility upon collision with other cells. Improper regulation of CIL has been implicated in cancer cell dissemination. Here, we identify the cell adhesion molecule JAM-A as a central regulator of CIL in tumor cells.

View Article and Find Full Text PDF

A key behavior observed during morphogenesis, wound healing, and cancer invasion is that of collective and coordinated cellular motion. Hence, understanding the different aspects of such coordinated migration is fundamental for describing and treating cancer and other pathological defects. In general, individual cells exert forces on their environment in order to move, and collective motion is coordinated by cell-cell adhesion-based forces.

View Article and Find Full Text PDF

Active microrheology is one of the main methods to determine the mechanical properties of cells and tissue, and the modelling of these viscoelastic properties is under heavy debate with many competing approaches. Most experimental methods of active microrheology such as optical tweezers or atomic force microscopy based approaches rely on single cell measurements, and thus suffer from a low throughput. Here, we present a novel method for frequency-dependent microrheology on cells using acoustic forces which allows multiplexed measurements of several cells in parallel.

View Article and Find Full Text PDF

The electronic properties of the organic/inorganic semiconductor heterojunction formed by para-sexiphenyl (6P) and three different faces of ZnO are investigated using photoelectron spectroscopy and X-ray absorption. While multilayer molecules stand almost upright with respect to the surface plane, we evidence the presence of a lying 6P interlayer, which exhibits a higher electron affinity. This is due to an energy gap narrowing because of the close vicinity of that interlayer to the higher dielectric constant ZnO and a more planar molecular conformation compared to molecules in the bulk.

View Article and Find Full Text PDF

Objective: Functional imaging studies have used numerous neurocognitive designs to investigate brain activation during theory of mind (ToM) tasks in patients with schizophrenia. The majority of studies asks participants to retrospectively attribute mental states to others. We used a novel animated task to investigate implicit mentalizing online.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionbdgob87cataaq3t9d6vrj002or8k8ri2): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once