With large wildfires becoming more frequent, we must rapidly learn how megafires impact biodiversity to prioritize mitigation and improve policy. A key challenge is to discover how interactions among fire-regime components, drought and land tenure shape wildfire impacts. The globally unprecedented 2019-2020 Australian megafires burnt more than 10 million hectares, prompting major investment in biodiversity monitoring.
View Article and Find Full Text PDFUnderstanding the biophysical limitations on forest carbon across diverse ecological regions is crucial for accurately assessing and managing forest carbon stocks. This study investigates the role of climate and disturbance on the spatial variation of two key forest carbon pools: aboveground carbon (AGC) and soil organic carbon (SOC). Using plot-level carbon pool estimates from Nepal's national forest inventory and structural equation modelling, we explore the relationship of forest carbon stocks to broad-scale climatic water and energy availability and fine-scale terrain and disturbance.
View Article and Find Full Text PDFThe capacity for terrestrial ecosystems to sequester additional carbon (C) with rising CO concentrations depends on soil nutrient availability. Previous evidence suggested that mature forests growing on phosphorus (P)-deprived soils had limited capacity to sequester extra biomass under elevated CO (refs. ), but uncertainty about ecosystem P cycling and its CO response represents a crucial bottleneck for mechanistic prediction of the land C sink under climate change.
View Article and Find Full Text PDFWe assembled the first gridded burned area (BA) database of national wildfire data (ONFIRE), a comprehensive and integrated resource for researchers, non-government organisations, and government agencies analysing wildfires in various regions of the Earth. We extracted and harmonised records from different regions and sources using open and reproducible methods, providing data in a common framework for the whole period available (starting from 1950 in Australia, 1959 in Canada, 1985 in Chile, 1980 in Europe, and 1984 in the United States) up to 2021 on a common 1° × 1° grid. The data originate from national agencies (often, ground mapping), thus representing the best local expert knowledge.
View Article and Find Full Text PDFGlobe-LFMC 2.0, an updated version of Globe-LFMC, is a comprehensive dataset of over 280,000 Live Fuel Moisture Content (LFMC) measurements. These measurements were gathered through field campaigns conducted in 15 countries spanning 47 years.
View Article and Find Full Text PDFGiven the contribution of deforestation and forest degradation to the global carbon cycle, forest resources are critical to mitigating the global climate change effects. Improved forest monitoring across different biomes is important to understand forest dynamics better and improve global projections of future atmospheric CO concentration. Better quantification of the forest carbon cycle advances scientific understanding and informs global negotiations about carbon emissions reduction.
View Article and Find Full Text PDFComprehensive forest carbon accounting requires reliable estimation of soil organic carbon (SOC) stocks. Despite being an important carbon pool, limited information is available on SOC stocks in global forests, particularly for forests in mountainous regions, such as the Central Himalayas. The availability of consistently measured new field data enabled us to accurately estimate forest soil organic carbon (SOC) stocks in Nepal, addressing a previously existing knowledge gap.
View Article and Find Full Text PDFIn 2019, south-eastern Australia experienced its driest and hottest year on record, resulting in massive canopy dieback events in eucalypt dominated forests. A subsequent period of high precipitation in 2020 provided a rare opportunity to quantify the impacts of extreme drought and consequent recovery. We quantified canopy health and hydraulic impairment (native percent loss of hydraulic conductivity, PLC) of 18 native tree species growing at 15 sites that were heavily impacted by the drought both during and 8-10 months after the drought.
View Article and Find Full Text PDFLevels of fire activity and severity that are unprecedented in the instrumental record have recently been observed in forested regions around the world. Using a large sample of daily fire events and hourly climate data, here we show that fire activity in all global forest biomes responds strongly and predictably to exceedance of thresholds in atmospheric water demand, as measured by maximum daily vapour pressure deficit. The climatology of vapour pressure deficit can therefore be reliably used to predict forest fire risk under projected future climates.
View Article and Find Full Text PDFDeadwood is a large global carbon store with its store size partially determined by biotic decay. Microbial wood decay rates are known to respond to changing temperature and precipitation. Termites are also important decomposers in the tropics but are less well studied.
View Article and Find Full Text PDFNon-forest ecosystems, dominated by shrubs, grasses and herbaceous plants, provide ecosystem services including carbon sequestration and forage for grazing, and are highly sensitive to climatic changes. Yet these ecosystems are poorly represented in remotely sensed biomass products and are undersampled by in situ monitoring. Current global change threats emphasize the need for new tools to capture biomass change in non-forest ecosystems at appropriate scales.
View Article and Find Full Text PDFThere is an imperative for fire agencies to quantify the potential for prescribed burning to mitigate risk to life, property and environmental values while facing changing climates. The 2019-2020 Black Summer fires in eastern Australia raised questions about the effectiveness of prescribed burning in mitigating risk under unprecedented fire conditions. We performed a simulation experiment to test the effects of different rates of prescribed burning treatment on risks posed by wildfire to life, property and infrastructure.
View Article and Find Full Text PDFWildfires are becoming an increasing threat to many communities worldwide. There has been substantial progress towards understanding the proximal causes of increased fire activity in recent years at regional and national scales. However, subcontinental scale examinations of the commonalities and differences in the drivers of fire activity across different regions are rare in the Mediterranean zone of the European Union (EUMed).
View Article and Find Full Text PDFFuel moisture limits the availability of fuel to wildfires in many forest areas worldwide, but the effects of climate change on moisture constraints remain largely unknown. Here we addressed how climate affects fuel moisture in pine stands from Catalonia, NE Spain, and the potential effects of increasing climate aridity on burned area in the Pyrenees, a mesic mountainous area where fire is currently rare. We first quantified variation in fuel moisture in six sites distributed across an altitudinal gradient where the long-term mean annual temperature and precipitation vary by 6-15 °C and 395-933 mm, respectively.
View Article and Find Full Text PDFEastern Australia was subject to its hottest and driest year on record in 2019. This extreme drought resulted in massive canopy die-back in eucalypt forests. The role of hydraulic failure and tree size on canopy die-back in three eucalypt tree species during this drought was examined.
View Article and Find Full Text PDFResprouting is an ancestral trait in angiosperms that confers resilience after perturbations. As climate change increases stress, resprouting vigor is declining in many forest regions, but the underlying mechanism is poorly understood. Resprouting in woody plants is thought to be primarily limited by the availability of non-structural carbohydrate reserves (NSC), but hydraulic limitations could also be important.
View Article and Find Full Text PDFAtmospheric carbon dioxide enrichment (eCO) can enhance plant carbon uptake and growth, thereby providing an important negative feedback to climate change by slowing the rate of increase of the atmospheric CO concentration. Although evidence gathered from young aggrading forests has generally indicated a strong CO fertilization effect on biomass growth, it is unclear whether mature forests respond to eCO in a similar way. In mature trees and forest stands, photosynthetic uptake has been found to increase under eCO without any apparent accompanying growth response, leaving the fate of additional carbon fixed under eCO unclear.
View Article and Find Full Text PDFAn amendment to this paper has been published and can be accessed via a link at the top of the paper.
View Article and Find Full Text PDF