Quantum interference plays an important role in charge transport through single-molecule junctions, even at room temperature. Of special interest is the measurement of the destructive quantum interference dip itself. Such measurements are especially demanding when performed in a continuous mode of operation.
View Article and Find Full Text PDFSingle molecules can be used as miniaturized functional electronic components, when contacted by macroscopic electrodes. Mechanosensitivity describes a change in conductance for a certain change in electrode separation and is a desirable feature for applications such as ultrasensitive stress sensors. We combine methods of artificial intelligence with high-level simulations based on electronic structure theory to construct optimized mechanosensitive molecules from predefined, modular molecular building blocks.
View Article and Find Full Text PDFBackground: Osteoporotic fractures are associated with a loss of quality of life, but only few patients receive an appropriate therapy. Therefore, the present study aims to investigate the awareness of musculoskeletal patients to participate in osteoporosis assessment and to evaluate whether there are significant differences between acute care patients treated for major fractures of the hip compared to elective patients treated for hip joint replacement.; Methods: From May 2015 to December 2016 patients who were undergoing surgical treatment for proximal femur fracture or total hip replacement due to osteoarthritis and were at risk for an underlying osteoporosis (female > 60 and male > 70 years) were included in the study and asked to complete a questionnaire assessing the awareness for an underlying osteoporosis.
View Article and Find Full Text PDFPurpose: The present study is aiming to evaluate patients' awareness to participate in further diagnostics for osteoporosis and to find out if there are significant differences with regards to fracture site.
Methods: Patients at risk for underlying osteoporosis (female >60 and male >70 years) undergoing surgical treatment for a distal radius fracture (DRF) or a proximal femur fracture (PFF) were asked to complete a questionnaire assessing the awareness for underlying osteoporosis. Furthermore, dual-X-ray absorptiometry (DXA) scans were analyzed.
The anatomic conditions of the female breast require imaging the breast region 3-dimensionally in a normal standing position for quality assurance and for surgery planning or surgery simulation. The goal of this work was to optimize the imaging technology for the mammary region with a 3-dimensional (3D) laser scanner, to evaluate the precision and accuracy of the method, and to allow optimum data reproducibility. Avoiding the influence of biotic factors, such as mobility, we tested the most favorable imaging technology on dummy models for scanner-related factors such as the scanner position in comparison with the torso and the number of scanners and single shots.
View Article and Find Full Text PDF