Rhythmic production of vertebral precursors, the somites, causes bilateral columns of embryonic segments to form. This process involves a molecular oscillator--the segmentation clock--whose signal is translated into a spatial, periodic pattern by a complex signalling gradient system within the presomitic mesoderm (PSM). In mouse embryos, Wnt signalling has been implicated in both the clock and gradient mechanisms, but how the Wnt pathway can perform these two functions simultaneously remains unclear.
View Article and Find Full Text PDFFibroblast growth factor (FGF) signaling plays a crucial role in vertebrate segmentation. The FGF pathway establishes a posterior-to-anterior signaling gradient in the presomitic mesoderm (PSM), which controls cell maturation and is involved in the positioning of segmental boundaries. In addition, FGF signaling was shown to be rhythmically activated in the PSM in response to the segmentation clock.
View Article and Find Full Text PDFBackground: The understanding of whole genome sequences in higher eukaryotes depends to a large degree on the reliable definition of transcription units including exon/intron structures, translated open reading frames (ORFs) and flanking untranslated regions. The best currently available chicken transcript catalog is the Ensembl build based on the mappings of a relatively small number of full length cDNAs and ESTs to the genome as well as genome sequence derived in silico gene predictions.
Results: We use Long Serial Analysis of Gene Expression (LongSAGE) in bursal lymphocytes and the DT40 cell line to verify the quality and completeness of the annotated transcripts.
Motivation: Owing to its increased tag length, LongSAGE tags are expected to be more reliable in direct assignment to genome sequences. Therefore, we evaluated the use of LongSAGE data in genome annotation by using our LongSAGE dataset of 202 015 tags (consisting of 41 718 unique tags), experimentally generated from mouse embryonic tail libraries.
Results: A fraction of LongSAGE tags could not be unambiguously assigned to its gene, due to the presence of widely conserved sequences downstream of particular CATG anchor sites.
Motivation: Despite the increasing notions of the functional importance of antisense transcripts in gene regulation, the genome-wide overview on the ontology of antisense genes has not been obtained. Therefore, we tried to find novel antisense genes genome-wide by using our LongSAGE dataset of 202 015 tags (consisting of 41 718 unique tags), experimentally generated from mouse embryonic tail libraries.
Results: We identified 1260 potential antisense genes, of which 1001 are not annotated in EnsEMBL, thereby being regarded as novel.
Here, we present evidence that Lrp6, a coreceptor for Wnt ligands, is required for the normal formation of somites and bones. By positional cloning, we demonstrate that a novel spontaneous mutation ringelschwanz (rs) in the mouse is caused by a point mutation in Lrp6, leading to an amino acid substitution of tryptophan for the evolutionarily conserved residue arginine at codon 886 (R886W). We show that rs is a hypomorphic Lrp6 allele by a genetic complementation test with Lrp6-null mice, and that the mutated protein cannot efficiently transduce signals through the Wnt/beta-catenin pathway.
View Article and Find Full Text PDF