All living cells vibrate depending on metabolism. It has been hypothesized that vibrations are unique for a given phenotype and thereby suitable to diagnose cancer type and stage and to pre-assess the effectiveness of pharmaceutical treatments in real time. However, cells exhibit highly variable vibrational signals, can be subject to environmental noise, and may be challenging to differentiate, having so far limited the phenomenon's applicability.
View Article and Find Full Text PDFA thin film of pulmonary surfactant lines the surface of the airways and alveoli, where it lowers the surface tension in the peripheral lungs, preventing collapse of the bronchioles and alveoli and reducing the work of breathing. It also possesses a barrier function for maintaining the blood-gas interface of the lungs and plays an important role in innate immunity. The surfactant film covers the epithelium lining both large and small airways, forming the first line of defense between toxic airborne particles/pathogens and the lungs.
View Article and Find Full Text PDFColloids Surf B Biointerfaces
February 2023
Inhalation of harmful vaping additives has led to a series of lung illnesses. Some of the selected additives such as vitamin E acetate, and related molecules like vitamin E and cannabidiol, may interfere with the function of the lung surfactant. Proper lipid organization in lung surfactant is key to maintaining low surface tensions, which provides alveolar stability and effective gas exchange throughout respiration.
View Article and Find Full Text PDFDuring respiration, humans breathe in more than 10,000 liters of non-sterile air daily, allowing some pathogens access to alveoli. Interestingly, alveoli outnumber alveolar macrophages (AMs), which favors alveoli devoid of AMs. If AMs, like most tissue macrophages, are sessile, then this numerical advantage would be exploited by pathogens unless neutrophils from the blood stream intervened.
View Article and Find Full Text PDFMicrotubules (MTs), microfilaments, and intermediate filaments, the main constituents of the cytoskeleton, undergo continuous structural changes (metamorphosis), which are central to cellular growth, division, and release of microvesicles (MVs). Altered MTs dynamics, uncontrolled proliferation, and increased production of MVs are hallmarks of carcinogenesis. Class III beta-tubulin (β3-tubulin), one of seven β-tubulin isotypes, is a primary component of MT, which correlates with enhanced neoplastic cell survival, metastasis and resistance to chemotherapy.
View Article and Find Full Text PDFIntroduction: Corynebacterium tuberculostearicum (C. t.) is a ubiquitous bacterium that colonizes human skin.
View Article and Find Full Text PDFNanoparticles in polluted air or aerosolized drug nanoparticles predominantly settle in the alveolar lung. Here, we describe a novel, highly effective pathway for the particles to cross the alveolar epithelium and reach the lymph and bloodstream. Amorphous silica nanoparticles, suspended in perfluorocarbon, were instilled into the lungs of mice for intravital microscopy.
View Article and Find Full Text PDFBacterial quorum-sensing autoinducers are small chemicals released to control microbial community behaviours. N-(3-oxo-dodecanoyl) homoserine lactone, the autoinducer of the Pseudomonas aeruginosa LasI-LasR circuitry, triggers significant cell death in lymphocytes. We found that this molecule is incorporated into the mammalian plasma membrane and induces dissolution of eukaryotic lipid domains.
View Article and Find Full Text PDFAtherosclerosis is driven by an inflammatory milieu in the walls of artery vessels. Initiated early in life, it progresses to plaque formation and form cell accumulation. A culprit in this cascade is the deposition of cholesterol crystals (CC).
View Article and Find Full Text PDFObjectives: Acute respiratory distress syndrome (ARDS) is caused by many factors including inhalation of toxicants, acute barotrauma, acid aspiration, and burns. Surfactant function is impaired in ARDS and acute airway injury resulting in high surface tension with alveolar and small airway collapse, edema, hypoxemia, and death. In this study, we explore the mechanisms whereby surfactant becomes dysfunctional in ARDS and bronchiolitis and its repair with a cyclodextrin drug that sequesters cholesterol.
View Article and Find Full Text PDFNatural killer (NK) cells use the activating receptor NKp30 as a microbial pattern-recognition receptor to recognize, activate cytolytic pathways, and directly kill the fungi Cryptococcus neoformans and Candida albicans. However, the fungal pathogen-associated molecular pattern (PAMP) that triggers NKp30-mediated killing remains to be identified. Here we show that β-1,3-glucan, a component of the fungal cell wall, binds to NKp30.
View Article and Find Full Text PDFBiochim Biophys Acta Gen Subj
April 2018
Pulmonary surfactant forms a cohesive film at the alveolar air-lung interface, lowering surface tension, and thus reducing the work of breathing and preventing atelectasis. Surfactant function becomes impaired during inflammation due to degradation of the surfactant lipids and proteins by free radicals. In this study, we examine the role of reactive nitrogen (RNS) and oxygen (ROS) species on surfactant function with and without physiological cholesterol levels (5-10%).
View Article and Find Full Text PDFCardiac ryanodine receptors (RyR2s) are Ca release channels clustering in the sarcoplasmic reticulum membrane. These clusters are believed to be the elementary units of Ca release. The distribution of these Ca release units plays a critical role in determining the spatio-temporal profile and stability of sarcoplasmic reticulum Ca release.
View Article and Find Full Text PDFThis study reports vibration profiles of neuronal cells and tissues as well as brain tumor and neocortical specimens. A contact-free method and analysis protocol was designed to convert an atomic force microscope into an ultra-sensitive microphone with capacity to record and listen to live biological samples. A frequency of 3.
View Article and Find Full Text PDFBackground: Airway surfactant is impaired in cystic fibrosis (CF) and associated with declines in pulmonary function. We hypothesized that surfactant dysfunction in CF is due to an excess of cholesterol with an interaction with oxidation.
Methods: Surfactant was extracted from bronchial lavage fluid from children with CF and surface tension, and lipid content, inflammatory cells and microbial flora were determined.
Biochim Biophys Acta Biomembr
August 2017
The pulmonary surfactant is a protein-lipid mixture that spreads into a film at the air-lung interface. The highly-compacted molecules of the film keep the interface from shrinking under the influence of otherwise high surface tension and thus prevent atelectasis. We have previously shown that for the film to withstand a high film pressure without collapsing it needs to assume a specific architecture of a molecular monolayer with islands of stacks of molecular multilayers scattered over the area.
View Article and Find Full Text PDFWe have shown that nanoparticles (NPs) can be used as ligand-multimerization platforms to activate specific cellular receptors in vivo. Nanoparticles coated with autoimmune disease-relevant peptide-major histocompatibility complexes (pMHC) blunted autoimmune responses by triggering the differentiation and expansion of antigen-specific regulatory T cells in vivo. Here, we define the engineering principles impacting biological activity, detail a synthesis process yielding safe and stable compounds, and visualize how these nanomedicines interact with cognate T cells.
View Article and Find Full Text PDFDendritic cells are targeted by regulatory T (T reg) cells, in a manner that operates as an indirect mode of T cell suppression. In this study, using a combination of single-cell force spectroscopy and structured illumination microscopy, we analyze individual T reg cell-DC interaction events and show that T reg cells exhibit strong intrinsic adhesiveness to DCs. This increased DC adhesion reduces the ability of contacted DCs to engage other antigen-specific cells.
View Article and Find Full Text PDFMethicillin-resistant Staphylococcus aureus (MRSA) bacteremia is reaching epidemic proportions causing morbidity, mortality, and chronic disease due to relapses, suggesting an intracellular reservoir. Using spinning-disk confocal intravital microscopy to track MRSA-GFP in vivo, we identified that within minutes after intravenous infection MRSA is primarily sequestered and killed by intravascular Kupffer cells (KCs) in the liver. However, a minority of the Staphylococci overcome the KC's antimicrobial defenses.
View Article and Find Full Text PDFCampylobacter jejuni is the most common cause of bacterium-induced gastroenteritis, and while typically self-limiting, C. jejuni infections are associated with postinfectious intestinal disorders, including flares in patients with inflammatory bowel disease and postinfectious irritable bowel syndrome (PI-IBS), via mechanisms that remain obscure. Based on the hypothesis that acute campylobacteriosis may cause pathogenic microbiota dysbiosis, we investigated whether C.
View Article and Find Full Text PDFPeptides presented by MHC class I molecules are mostly derived from proteins synthesized by the antigen-presenting cell itself, while peptides presented by MHC class II molecules are predominantly from materials acquired by endocytosis. External antigens can also be presented by MHC class I molecules in a process referred to as cross-presentation. Here, we report that mouse dendritic cell (DC) engagement to a phagocytic target alters endocytic processing and inhibits the proteolytic activities.
View Article and Find Full Text PDFImpact loading of articular cartilage causes extensive chondrocyte death. Cell membranes have a limited elastic range of 3-4% strain but are protected from direct stretch during physiological loading by their membrane reservoir, an intricate pattern of membrane folds. Using a finite-element model, we suggested previously that access to the membrane reservoir is strain-rate-dependent and that during impact loading, the accessible membrane reservoir is drastically decreased, so that strains applied to chondrocytes are directly transferred to cell membranes, which fail when strains exceed 3-4%.
View Article and Find Full Text PDFThe adhesion of Plasmodium falciparum-infected erythrocytes (IRBC) to receptors on different host cells plays a divergent yet critical role in determining the progression and outcome of the infection. Based on our ex vivo studies with clinical parasite isolates from adult Thai patients, we have previously proposed a paradigm for IRBC cytoadherence under physiological shear stress that consists of a recruitment cascade mediated largely by P-selectin, ICAM-1 and CD36 on primary human dermal microvascular endothelium (HDMEC). In addition, we detected post-adhesion signaling events involving Src family kinases and the adaptor protein p130CAS in endothelial cells that lead to CD36 clustering and cytoskeletal rearrangement which enhance the magnitude of the adhesive strength, allowing adherent IRBC to withstand shear stress of up to 20 dynes/cm².
View Article and Find Full Text PDF