Moiré materials host a wealth of intertwined correlated and topological states of matter, all arising from flat electronic bands with nontrivial quantum geometry. A prominent example is the family of alternating-twist magic-angle graphene stacks, which exhibit symmetry-broken states at rational fillings of the moiré band and superconductivity close to half filling. Here, we introduce a second family of twisted graphene multilayers made up of twisted sheets of M- and N-layer Bernal-stacked graphene flakes.
View Article and Find Full Text PDFUltraclean graphene at charge neutrality hosts a quantum critical Dirac fluid of interacting electrons and holes. Interactions profoundly affect the charge dynamics of graphene, which is encoded in the properties of its electron-photon collective modes: surface plasmon polaritons (SPPs). Here, we show that polaritonic interference patterns are particularly well suited to unveil the interactions in Dirac fluids by tracking polaritonic interference in time at temporal scales commensurate with the electronic scattering.
View Article and Find Full Text PDFMoiré excitons are emergent optical excitations in two-dimensional semiconductors with moiré superlattice potentials. Although these excitations have been observed on several platforms, a system with dynamically tunable moiré potential to tailor their properties is yet to be realized. Here we present a continuously tunable moiré potential in monolayer WSe, enabled by its proximity to twisted bilayer graphene (TBG) near the magic angle.
View Article and Find Full Text PDFTwisted double bilayer graphene (tDBG) has emerged as a rich platform for studying strongly correlated and topological states, as its flat bands can be continuously tuned by both a perpendicular displacement field and a twist angle. Here, we construct a phase diagram representing the correlated and topological states as a function of these parameters, based on measurements of over a dozen tDBG devices encompassing two distinct stacking configurations. We find a hierarchy of symmetry-broken states that emerge sequentially as the twist angle approaches an apparent optimal value of θ ≈ 1.
View Article and Find Full Text PDFThis work reports the experimental demonstration of single-slit diffraction exhibited by electrons propagating in encapsulated graphene with an effective de Broglie wavelength corresponding to their attributes as massless Dirac fermions. Nanometer-scale device designs were implemented to fabricate a single-slit followed by five detector paths. Predictive calculations were also utilized to readily understand the observations reported.
View Article and Find Full Text PDFMoiré patterns formed by stacking atomically thin van der Waals crystals with a relative twist angle can give rise to notable new physical properties. The study of moiré materials has so far been limited to structures comprising no more than a few van der Waals sheets, because a moiré pattern localized to a single two-dimensional interface is generally assumed to be incapable of appreciably modifying the properties of a bulk three-dimensional crystal. Here, we perform transport measurements of dual-gated devices constructed by slightly rotating a monolayer graphene sheet atop a thin bulk graphite crystal.
View Article and Find Full Text PDFThe extreme versatility of van der Waals materials originates from their ability to exhibit new electronic properties when assembled in close proximity to dissimilar crystals. For example, although graphene is inherently nonmagnetic, recent work has reported a magnetic proximity effect in graphene interfaced with magnetic substrates, potentially enabling a pathway toward achieving a high-temperature quantum anomalous Hall effect. Here, we investigate heterostructures of graphene and chromium trihalide magnetic insulators (CrI, CrBr, and CrCl).
View Article and Find Full Text PDFSignificanceWhen two sheets of graphene are twisted to the magic angle of 1.1, the resulting flat moiré bands can host exotic correlated electronic states such as superconductivity and ferromagnetism. Here, we show transport properties of a twisted bilayer graphene device at 1.
View Article and Find Full Text PDFMoiré superlattices of 2D materials with a small twist angle are thought to exhibit appreciable flexoelectric effect, though unambiguous confirmation of their flexoelectricity is challenging due to artifacts associated with commonly used piezoresponse force microscopy (PFM). For example, unexpectedly small phase contrast (≈8°) between opposite flexoelectric polarizations is reported in twisted bilayer graphene (tBG), though theoretically predicted value is 180°. Here a methodology is developed to extract intrinsic moiré flexoelectricity using twisted double bilayer graphene (tDBG) as a model system, probed by lateral PFM.
View Article and Find Full Text PDFFlat band moiré superlattices have recently emerged as unique platforms for investigating the interplay between strong electronic correlations, nontrivial band topology, and multiple isospin 'flavor' symmetries. Twisted monolayer-bilayer graphene (tMBG) is an especially rich system owing to its low crystal symmetry and the tunability of its bandwidth and topology with an external electric field. Here, we find that orbital magnetism is abundant within the correlated phase diagram of tMBG, giving rise to the anomalous Hall effect in correlated metallic states nearby most odd integer fillings of the flat conduction band, as well as correlated Chern insulator states stabilized in an external magnetic field.
View Article and Find Full Text PDFTuning the properties of atomic crystals in the two-dimensional (2D) limit is synthetically challenging, but critical to unlock their potential in fundamental research and nanotechnology alike. 2D crystals assembled using superatomic blocks could provide a route to encrypt desirable functionality, yet strategies to link the inorganic blocks together in predetermined dimensionality or symmetry are scarce. Here, we describe the synthesis of anisotropic van der Waals crystalline frameworks using the designer superatomic nanocluster Co(py)CoSeL (py = pyridine, L = PhPN(Tol)), and ditopic linkers.
View Article and Find Full Text PDFThe physical properties of two-dimensional van der Waals crystals can be sensitive to interlayer coupling. For two-dimensional magnets, theory suggests that interlayer exchange coupling is strongly dependent on layer separation while the stacking arrangement can even change the sign of the interlayer magnetic exchange, thus drastically modifying the ground state. Here, we demonstrate pressure tuning of magnetic order in the two-dimensional magnet CrI.
View Article and Find Full Text PDFIn van der Waals (vdW) heterostructures consisting of atomically thin crystals layered on top of one another, lattice mismatch and rotation between the layers can result in long-wavelength moiré superlattices. These moiré patterns can drive notable band structure reconstruction of the composite material, leading to a wide range of emergent phenomena including superconductivity, magnetism, fractional Chern insulating states and moiré excitons. Here, we investigate devices consisting of monolayer graphene encapsulated between two crystals of boron nitride (BN), in which the rotational alignment of all three components is controlled.
View Article and Find Full Text PDFThe electronic properties of heterostructures of atomically thin van der Waals crystals can be modified substantially by moiré superlattice potentials from an interlayer twist between crystals. Moiré tuning of the band structure has led to the recent discovery of superconductivity and correlated insulating phases in twisted bilayer graphene (TBG) near the 'magic angle' of twist of about 1.1 degrees, with a phase diagram reminiscent of high-transition-temperature superconductors.
View Article and Find Full Text PDFMaterials with flat electronic bands often exhibit exotic quantum phenomena owing to strong correlations. An isolated low-energy flat band can be induced in bilayer graphene by simply rotating the layers by 1.1°, resulting in the appearance of gate-tunable superconducting and correlated insulating phases.
View Article and Find Full Text PDFHeterostructures can be assembled from atomically thin materials by combining a wide range of available van der Waals crystals, providing exciting possibilities for designer electronics . In many cases, beyond simply realizing new material combinations, interlayer interactions lead to emergent electronic properties that are fundamentally distinct from those of the constituent layers . A critical parameter in these structures is the interlayer coupling strength, but this is often not easy to determine and is typically considered to be a fixed property of the system.
View Article and Find Full Text PDFMonolayers (MLs) of transition-metal dichalcogenides (TMDs) exhibit unusual electrical behaviour under magnetic fields due to their intrinsic spin-orbit coupling and lack of inversion symmetry. Although recent experiments have also identified the critical role of carrier interactions within these materials, a complete mapping of the ambipolar Landau level (LL) sequence has remained elusive. Here we use single-electron transistors (SETs) to perform LL spectroscopy in ML WSe, and provide a comprehensive picture of the electronic structure of a ML TMD for both electrons and holes.
View Article and Find Full Text PDFThe electronic band structure of twisted bilayer graphene develops van Hove singularities whose energy depends on the twist angle between the two layers. Using Raman spectroscopy, we monitor the evolution of the electronic band structure upon doping using the G peak area which is enhanced when the laser photon energy is resonant with the energy separation of the van Hove singularities. Upon charge doping, the Raman G peak area initially increases for twist angles larger than a critical angle and decreases for smaller angles.
View Article and Find Full Text PDFCombining atomically-thin van der Waals materials into heterostructures provides a powerful path towards the creation of designer electronic devices. The interaction strength between neighbouring layers, most easily controlled through their interlayer separation, can have significant influence on the electronic properties of these composite materials. Here, we demonstrate unprecedented control over interlayer interactions by locally modifying the interlayer separation between graphene and boron nitride, which we achieve by applying pressure with a scanning tunnelling microscopy tip.
View Article and Find Full Text PDFWe describe the realization of van der Waals (vdW) heterostructures with accurate rotational alignment of individual layer crystal axes. We illustrate the approach by demonstrating a Bernal-stacked bilayer graphene formed using successive transfers of monolayer graphene flakes. The Raman spectra of this artificial bilayer graphene possess a wide 2D band, which is best fit by four Lorentzians, consistent with Bernal stacking.
View Article and Find Full Text PDFPhys Rev Lett
September 2015
We report scanning tunneling microscopy and scanning tunneling spectroscopy (STS) measurements of monolayer and bilayer WSe_{2}. We measure a band gap of 2.21±0.
View Article and Find Full Text PDFSemiconducting transition metal dichalchogenides (TMDs) are a family of van der Waals bonded materials that have recently received interest as alternative substrates to hexagonal boron nitride (hBN) for graphene, as well as for components in novel graphene-based device heterostructures. We elucidate the local structural and electronic properties of graphene on TMD heterostructures through scanning tunneling microscopy and spectroscopy measurements. We find that crystalline defects intrinsic to TMDs induce substantial electronic scattering and charge carrier density fluctuations in the graphene.
View Article and Find Full Text PDF