Publications by authors named "Matthew Witkowski"

CD47 is overexpressed on the surface of many types of cancer cells, including T-cell acute lymphoblastic leukemia (T-ALL) cells. In this study, we have developed a diphtheria toxin (DT)-based bivalent anti-human CD47 immunotoxin (bi-CD47-IT) for the targeted therapy of CD47+ cancers using a unique DT-resistant yeast Pichia pastoris expression system. Bi-CD47-IT demonstrated compelling in vivo efficacy in multiple T-ALL cell line-derived xenograft (CDX) and patient-derived xenograft (PDX) mouse models.

View Article and Find Full Text PDF

Relapsed pediatric B-cell acute lymphoblastic leukemia (B-ALL) remains one of the leading causes of cancer mortality in children. We performed Hi-C, ATAC-seq, and RNA-seq on 12 matched diagnosis/relapse pediatric leukemia specimens to uncover dynamic structural variants (SVs) and 3D chromatin rewiring that may contribute to relapse. While translocations are assumed to occur early in leukemogenesis and be maintained throughout progression, we discovered novel, dynamic translocations and confirmed several fusion transcripts, suggesting functional and therapeutic relevance.

View Article and Find Full Text PDF

B cell acute lymphoblastic leukemia (B-ALL) arises from genetic alterations impacting B cell progenitors, ultimately leading to clinically overt disease. Extensive collaborative efforts in basic and clinical research have significantly improved patient prognoses. Nevertheless, a subset of patients demonstrate resistance to conventional chemotherapeutic approaches and emerging immunotherapeutic interventions.

View Article and Find Full Text PDF

Sequencing of bulk tumor populations has improved genetic classification and risk assessment of B-ALL, but does not directly examine intratumor heterogeneity or infer leukemia cellular origins. We profiled 89 B-ALL samples by single-cell RNA-seq (scRNA-seq) and compared them to a reference map of normal human B-cell development established using both functional and molecular assays. Intra-sample heterogeneity was driven by cell cycle, metabolism, differentiation, and inflammation transcriptional programs.

View Article and Find Full Text PDF

Chimeric antigen receptor (CAR) T cell immunotherapy is promising for treatment of blood cancers; however, clinical benefits remain unpredictable, necessitating development of optimal CAR T cell products. Unfortunately, current preclinical evaluation platforms are inadequate due to their limited physiological relevance to humans. We herein engineered an organotypic immunocompetent chip that recapitulates microarchitectural and pathophysiological characteristics of human leukemia bone marrow stromal and immune niches for CAR T cell therapy modeling.

View Article and Find Full Text PDF
Article Synopsis
  • Acute myeloid leukemia (AML) is a type of cancer in the blood that can be caused by different genetic changes.
  • Scientists are studying how these genetic changes affect the body's immune system's ability to fight or ignore the cancer.
  • They found that one specific gene, Nras, helps the immune system fight AML, but another gene, Myc, can make it harder for the immune system to do its job.
View Article and Find Full Text PDF

Highly coordinated changes in gene expression underlie T cell activation and exhaustion. However, the mechanisms by which such programs are regulated and how these may be targeted for therapeutic benefit remain poorly understood. Here, we comprehensively profile the genomic occupancy of mSWI/SNF chromatin remodeling complexes throughout acute and chronic T cell stimulation, finding that stepwise changes in localization over transcription factor binding sites direct site-specific chromatin accessibility and gene activation leading to distinct phenotypes.

View Article and Find Full Text PDF

Background: Adaptive CD19-targeted chimeric antigen receptor (CAR) T-cell transfer has become a promising treatment for leukemia. Although patient responses vary across different clinical trials, reliable methods to dissect and predict patient responses to novel therapies are currently lacking. Recently, the depiction of patient responses has been achieved using in silico computational models, with prediction application being limited.

View Article and Find Full Text PDF

Acute myeloid leukemia (AML) is a hematopoietic malignancy with poor prognosis and limited treatment options. Here we provide a comprehensive census of the bone marrow immune microenvironment in adult and pediatric patients with AML. We characterize unique inflammation signatures in a subset of AML patients, associated with inferior outcomes.

View Article and Find Full Text PDF

B cell progenitor acute lymphoblastic leukemia (B-ALL) treatment has been revolutionized by T cell-based immunotherapies-including chimeric antigen receptor T cell therapy (CAR-T) and the bispecific T cell engager therapeutic, blinatumomab-targeting surface glycoprotein CD19. Unfortunately, many patients with B-ALL will fail immunotherapy due to 'antigen escape'-the loss or absence of leukemic CD19 targeted by anti-leukemic T cells. In the present study, we utilized a genome-wide CRISPR-Cas9 screening approach to identify modulators of CD19 abundance on human B-ALL blasts.

View Article and Find Full Text PDF

Despite recent progress in identifying the genetic drivers of acute lymphoblastic leukemia (ALL), prognosis remains poor for those individuals who experience disease recurrence. Moreover, acute leukemias of ambiguous lineage lack a biologically informed framework to guide classification and therapy. These needs have driven the adoption of multiple complementary single-cell sequencing approaches to explore key issues in the biology of these leukemias, including cell of origin, developmental hierarchy and ontogeny, and the molecular heterogeneity driving pathogenesis, progression, and therapeutic responsiveness.

View Article and Find Full Text PDF
Article Synopsis
  • Covalent Bruton's tyrosine kinase (BTK) inhibitors have significantly improved treatment for B-cell cancers, such as chronic lymphocytic leukemia (CLL), but patients can develop resistance due to mutations at the BTK binding site and other mechanisms.
  • This study analyzed genomic data from CLL patients treated with the noncovalent BTK inhibitor pirtobrutinib and identified several mutations in BTK and phospholipase C gamma 2 (PLCγ2) that contribute to resistance.
  • The findings highlight new mechanisms of resistance that allow CLL to escape treatment effects, affecting both noncovalent and certain covalent BTK inhibitors, indicating a need for further research in overcoming these challenges.
View Article and Find Full Text PDF

Although deregulation of transfer RNA (tRNA) biogenesis promotes the translation of pro-tumorigenic mRNAs in cancers, the mechanisms and consequences of tRNA deregulation in tumorigenesis are poorly understood. Here we use a CRISPR-Cas9 screen to focus on genes that have been implicated in tRNA biogenesis, and identify a mechanism by which altered valine tRNA biogenesis enhances mitochondrial bioenergetics in T cell acute lymphoblastic leukaemia (T-ALL). Expression of valine aminoacyl tRNA synthetase is transcriptionally upregulated by NOTCH1, a key oncogene in T-ALL, underlining a role for oncogenic transcriptional programs in coordinating tRNA supply and demand.

View Article and Find Full Text PDF

Lack of cellular differentiation is a hallmark of many human cancers, including acute myeloid leukemia (AML). Strategies to overcome such a differentiation blockade are an approach for treating AML. To identify targets for differentiation-based therapies, we applied an integrated cell surface-based CRISPR platform to assess genes involved in maintaining the undifferentiated state of leukemia cells.

View Article and Find Full Text PDF

B cell acute lymphoblastic leukemia (B-ALL) blasts hijack the bone marrow (BM) microenvironment to form chemoprotective leukemic BM "niches," facilitating chemoresistance and, ultimately, disease relapse. However, the ability to dissect these evolving, heterogeneous interactions among distinct B-ALL subtypes and their varying BM niches is limited with current in vivo methods. Here, we demonstrated an in vitro organotypic "leukemia-on-a-chip" model to emulate the in vivo B-ALL BM pathology and comparatively studied the spatial and genetic heterogeneity of the BM niche in regulating B-ALL chemotherapy resistance.

View Article and Find Full Text PDF

A subset of B cell acute lymphoblastic leukemia (B-ALL) patients will relapse and succumb to therapy-resistant disease. The bone marrow microenvironment may support B-ALL progression and treatment evasion. Utilizing single-cell approaches, we demonstrate B-ALL bone marrow immune microenvironment remodeling upon disease initiation and subsequent re-emergence during conventional chemotherapy.

View Article and Find Full Text PDF

Numerous studies support a role of the microenvironment in maintenance of the leukemic clone, as well as in treatment resistance. It is clear that disruption of the normal bone marrow microenvironment is sufficient to promote leukemic transformation and survival in both a cell autonomous and non-cell autonomous manner. In this review, we provide a snapshot of the various cell types shown to contribute to the leukemic microenvironment as well as treatment resistance.

View Article and Find Full Text PDF

Treatment resistance remains a leading cause of acute leukemia-related deaths. Thus, there is an unmet need to develop novel approaches to improve outcome. New immune-based therapies with chimeric antigen receptor (CAR) T cells, bi-specific T cell engagers (BiTEs), and immune checkpoint blockers (ICBs) have emerged as effective treatment options for chemoresistant B cell acute lymphoblastic leukemia (B-ALL) and acute myeloid leukemia (AML).

View Article and Find Full Text PDF

Tumors are composed of phenotypically heterogeneous cancer cells that often resemble various differentiation states of their lineage of origin. Within this hierarchy, it is thought that an immature subpopulation of tumor-propagating cancer stem cells (CSCs) differentiates into non-tumorigenic progeny, providing a rationale for therapeutic strategies that specifically eradicate CSCs or induce their differentiation. The clinical success of these approaches depends on CSC differentiation being unidirectional rather than reversible, yet this question remains unresolved even in prototypically hierarchical malignancies, such as acute myeloid leukemia (AML).

View Article and Find Full Text PDF

The bone marrow microenvironment has a key role in regulating haematopoiesis, but its molecular complexity and response to stress are incompletely understood. Here we map the transcriptional landscape of mouse bone marrow vascular, perivascular and osteoblast cell populations at single-cell resolution, both at homeostasis and under conditions of stress-induced haematopoiesis. This analysis revealed previously unappreciated levels of cellular heterogeneity within the bone marrow niche and resolved cellular sources of pro-haematopoietic growth factors, chemokines and membrane-bound ligands.

View Article and Find Full Text PDF

Somatically acquired mutations in () frequently occur in hematopoietic malignancies and often coincide with ectopic expression of However, there is no functional evidence to demonstrate whether these mutations contribute to tumorigenesis. Similarly, the role of PHF6 in hematopoiesis is unknown. We report here that deletion in mice resulted in a reduced number of hematopoietic stem cells (HSCs), an increased number of hematopoietic progenitor cells, and an increased proportion of cycling stem and progenitor cells.

View Article and Find Full Text PDF

Loss-of-function mutations in TET2 occur frequently in patients with clonal hematopoiesis, myelodysplastic syndrome (MDS), and acute myeloid leukemia (AML) and are associated with a DNA hypermethylation phenotype. To determine the role of TET2 deficiency in leukemia stem cell maintenance, we generated a reversible transgenic RNAi mouse to model restoration of endogenous Tet2 expression. Tet2 restoration reverses aberrant hematopoietic stem and progenitor cell (HSPC) self-renewal in vitro and in vivo.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_sessionhkk4v8pfehc7kh90fcmlo9ikgsd4ldnn): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once