Publications by authors named "Matthew Watkins"

Metal-organic frameworks (MOFs) are increasingly being investigated as electrocatalysts for the oxygen evolution reaction (OER) due to their unique modular structures that present a hybrid between molecular and heterogeneous catalysts, featuring well-defined active sites. However, many fundamental questions remain open regarding the electrochemical stability of MOFs, structural reconstruction of coordination sites, and the role of formed species. Here, we report the structural transformation of a surface-grown MOF containing cobalt nodes and 1,1'-ferrocenedicarboxylic acid linkers (denoted as CoFc-MOF) during the OER in alkaline electrolyte.

View Article and Find Full Text PDF

Microplastics (MPs) are an everyday part of life, and are now ubiquitous in the environment. Crucially, MPs have not just been found within the environment, but also within human bodies, including the blood. We aimed to provide novel information on the range of MP polymer types present, as well as their size and shape characteristics, in human whole blood from 20 healthy volunteers.

View Article and Find Full Text PDF

Outdoor air pollution has been found to have a significant adverse effect on health. When the authors attempted to monitor air quality that cyclists or e-scooter users' breath during commuting in different locations for health and safety analysis, it was found that the existence of internal combustion engine (ICE) cars has a significant effect on the pollution levels and the monitoring process. To comprehensively study the effect of cars and traffic on air quality that cyclists and e-scooters users experience, a low-cost and reliable system was needed to detect the proximity of cars that have diesel or petrol engines.

View Article and Find Full Text PDF

Aβ oligomers play a central role in the neurodegeneration observed with Alzheimer's disease. Our laboratory has developed covalently stabilized trimers derived from residues 17-36 of Aβ as model systems for studying Aβ oligomers. In the current study, we apply the emerging techniques of fluorescence lifetime imaging microscopy (FLIM) and native mass spectrometry (native MS) to better understand the assembly and interactions of the oligomer model system 2AT-L in aqueous solutions and with cells.

View Article and Find Full Text PDF

Time-dependent density functional theory has become state-of-the-art for describing photophysical and photochemical processes in extended materials because of its affordable cost. The inclusion of exact exchange was shown to be essential for the correct description of the long-range asymptotics of electronic interactions and thus a well-balanced description of valence, Rydberg, and charge-transfer excitations. Several approaches for an efficient treatment of exact exchange have been established for the ground state, while implementations for excited-state properties are rare.

View Article and Find Full Text PDF

The demand of online remote working from home significantly increased in 2020/21 due to the Covid-19 pandemic. This unforeseen situation has forced individuals and organisations to rapidly train employees and adopt the use of on-line working styles, seeking to maintain the same level of productivity as working from the office. The paper outlines a survey conducted amongst people working from home to identify the challenges and opportunities this change in workstyle offers.

View Article and Find Full Text PDF

The recent development of true cost accounting (TCA) methodologies by various organizations has helped increase transparency in the food sector, but has also made it difficult to compare the results obtained through different methodologies. Here we review major TCA methodologies across five functional units that their assessment framework(s) apply to-namely product, organization, system, geography and investment. Our results show that the bulk of existing frameworks apply to products and/or organizations.

View Article and Find Full Text PDF

We report a combined non-local (PBE-TC-LRC) Density Functional Theory (DFT) and linear-response time-dependent DFT (LR-TDDFT) study of the structural, electronic, and optical properties of the cation-vacancy based defects in aluminosilicate (AlSi) imogolite nanotubes (Imo-NTs) that have been recently proposed on the basis of Nuclear Magnetic Resonance (NMR) experiments. Following numerical determination of the smallest AlSi Imo-NT model capable of accommodating the defect-induced relaxation with negligible finite-size errors, we analyse the defect-induced structural deformations in the NTs and ensuing changes in the NTs' electronic structure. The NMR-derived defects are found to introduce both shallow and deep occupied states in the pristine NTs' band gap (BG).

View Article and Find Full Text PDF

Using an advanced computational methodology implemented in CP2K, a non-local PBE0-TC-LRC density functional and the recently implemented linear response formulation of the Time-dependent Density Functional Theory equations, we test the interpretation of the optical absorption and photoluminescence signatures attributed by previous experimental and theoretical studies to O-vacancies in two widely used oxides-cubic MgO and monoclinic (m)-HfO. The results obtained in large periodic cells including up to 1000 atoms emphasize the importance of accurate predictions of defect-induced lattice distortions. They confirm that optical transitions of O-vacancies in 0, +1, and +2 charge states in MgO all have energies close to 5 eV.

View Article and Find Full Text PDF

On-surface polymerization is a promising technique to prepare organic functional nanomaterials that are challenging to synthesize in solution, but it is typically used on metal substrates, which play a catalytic role. Previous examples on insulating surfaces have involved intermediate self-assembled structures, which face high barriers to diffusion, or annealing to higher temperatures, which generally causes rapid dewetting and desorption of the monomers. Here we report the photoinitiated radical polymerization, initiated from a two-dimensional gas phase, of a dimaleimide monomer on an insulating KCl surface.

View Article and Find Full Text PDF

The prognosis of patients with HFrEF remains poor despite the use of current medical and device therapies. Preclinical studies of HFrEF using IC delivery of RT-100, a replication deficient, E1/E3-deleted human adenovirus 5 encoding human AC6 was associated with favorable effects on LV function and remodeling. A recent multicenter, double-blind, placebo-controlled, phase 2 study demonstrated the safety of IC delivery of RT-100 in HFrEF patients and potential efficacy at the higher doses.

View Article and Find Full Text PDF

Importance: Gene transfer has rarely been tested in randomized clinical trials.

Objective: To evaluate the safety and efficacy of intracoronary delivery of adenovirus 5 encoding adenylyl cyclase 6 (Ad5.hAC6) in heart failure.

View Article and Find Full Text PDF

Hydration plays important roles in various solid-liquid interfacial phenomena. Very recently, three-dimensional scanning force microscopy (3D-SFM) has been proposed as a tool to visualise solvated surfaces and their hydration structures with lateral and vertical (sub) molecular resolution. However, the relationship between the 3D force map obtained and the equilibrium water density, ρ(r), distribution above the surface remains an open question.

View Article and Find Full Text PDF

We present an efficient scheme for parametrizing complex molecule-surface force fields from ab initio data. The cost of producing a sufficient fitting library is mitigated using a 2D periodic embedded slab model made possible by the quantum mechanics/molecular mechanics scheme in CP2K. These results were then used in conjunction with genetic algorithm (GA) methods to optimize the large parameter sets needed to describe such systems.

View Article and Find Full Text PDF

Using ab initio modeling we demonstrate that H atoms can break strained Si─O bonds in continuous amorphous silicon dioxide (a-SiO(2)) networks, resulting in a new defect consisting of a threefold-coordinated Si atom with an unpaired electron facing a hydroxyl group, adding to the density of dangling bond defects, such as E' centers. The energy barriers to form this defect from interstitial H atoms range between 0.5 and 1.

View Article and Find Full Text PDF

Background/purpose: Bare metal stents (BMS) have similar rates of death and myocardial infarction (MI) compared to drug-eluting stents (DES). DES lower repeat revascularization rates compared to BMS, but may have higher rates of late stent thrombosis (ST) potentially due to impaired endothelialization requiring longer dual anti-platelet therapy (DAPT). OMEGA evaluated a novel BMS designed to have improved deliverability and radiopacity, in comparison to currently available platforms.

View Article and Find Full Text PDF

We demonstrate that using metallic tips for noncontact atomic force microscopy (NC-AFM) imaging at relatively large (>0.5 nm) tip-surface separations provides a reliable method for studying molecules on insulating surfaces with chemical resolution and greatly reduces the complexity of interpreting experimental data. The experimental NC-AFM imaging and theoretical simulations were carried out for the NiO(001) surface as well as adsorbed CO and Co-Salen molecules using Cr-coated Si tips.

View Article and Find Full Text PDF

We evaluate the performance of different van der Waals (vdW) corrected density functional theory (DFT) methods in predicting the structure of perfect interfaces between the LiF(001), MgO(001), NiO(001) films on the Ag(001) surface and the resulting work function shift of Ag(001). The results demonstrate that including the van der Waals interaction is important for obtaining accurate interface structures and the metal work function shift. The work function shift results from a subtle interplay of several effects strongly affected by even small changes in the interface geometry.

View Article and Find Full Text PDF

The critical quantity in understanding imaging using an atomic force microscope is the force the sample exerts on the tip. We put forward a simple one-to-one force to water density relationship, explain exactly how it occurs, and in which circumstances it holds. We argue that two wide classes of atomic force microscope (AFM) tip should lead to at least qualitative agreement with our model and represent a significant fraction of AFM tips as currently prepared.

View Article and Find Full Text PDF

High resolution atomic force microscopy (AFM) in liquids offers atomic scale insight into the structure at water/solid interfaces and is perhaps the only tool capable of resolving the nature of formed hydration layers. However, convolution between the imaging signal and the tip/surface interactions and hydration layers means that interpretation is far from straightforward. Modeling the complex imaging mechanism of atomic force microscopy in liquids requires calculation of the free energy profile as a function of the distance between AFM tip and surface.

View Article and Find Full Text PDF

We present the results of atomistic simulations of metallic atomic-force-microscopy tips interacting with ionic substrates, with atomic resolution. Chromium and tungsten tips are used to image the NaCl(001) and MgO(001) surfaces. The interaction of the tips with the surface is simulated by using density-functional-theory calculations employing a mixed Gaussian and plane-wave basis and cluster-tip models.

View Article and Find Full Text PDF