Publications by authors named "Matthew Wakai"

Chronic inflammation and a decline in mitochondrial function are hallmarks of aging. Here, we show that the two mechanisms may be linked. We found that interleukin-6 (IL6) suppresses mitochondrial function in settings where PGC1 (both PGC1α and PGC1β) expression is low.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates "sarcopenia," age-related muscle weakness, using mice and rats to identify genetic and signaling changes that occur as muscles age.
  • - Researchers analyzed the gene expression in various skeletal muscles at different ages to observe the differences between rats and mice, finding rat muscles showed greater age-related decline and unique metabolic pathway changes.
  • - The results suggest that rat muscle aging may better reflect human conditions, highlighting potential targets for therapy to combat muscle decline with age.
View Article and Find Full Text PDF

Low-protein (LP) diets are associated with a decreased risk of diabetes in humans, and promote leanness and glycaemic control in both rodents and humans. While the effects of an LP diet on glycaemic control are mediated by reduced levels of the branched-chain amino acids, we have observed that reducing dietary levels of the other six essential amino acids leads to changes in body composition. Here, we find that dietary histidine plays a key role in the response to an LP diet in male C57BL/6J mice.

View Article and Find Full Text PDF

A subset of hospitalized COVID-19 patients, particularly the aged and those with comorbidities, develop the most severe form of the disease, characterized by acute respiratory disease syndrome (ARDS), coincident with experiencing a "cytokine storm." Here, we demonstrate that cytokines which activate the NF-κB pathway can induce activin A. Patients with elevated activin A, activin B, and FLRG at hospital admission were associated with the most severe outcomes of COVID-19, including the requirement for mechanical ventilation, and all-cause mortality.

View Article and Find Full Text PDF

Low-protein diets promote metabolic health in rodents and humans, and the benefits of low-protein diets are recapitulated by specifically reducing dietary levels of the three branched-chain amino acids (BCAAs), leucine, isoleucine, and valine. Here, we demonstrate that each BCAA has distinct metabolic effects. A low isoleucine diet reprograms liver and adipose metabolism, increasing hepatic insulin sensitivity and ketogenesis and increasing energy expenditure, activating the FGF21-UCP1 axis.

View Article and Find Full Text PDF

Calorie restriction (CR) extends the healthspan and lifespan of diverse species. In mammals, a broadly conserved metabolic effect of CR is improved insulin sensitivity, which may mediate the beneficial effects of a CR diet. This model has been challenged by the identification of interventions that extend lifespan and healthspan yet promote insulin resistance.

View Article and Find Full Text PDF

The mechanistic target of rapamycin (mTOR) is an evolutionarily conserved protein kinase that regulates growth and metabolism. mTOR is found in two protein complexes, mTORC1 and mTORC2, that have distinct components and substrates and are both inhibited by rapamycin, a macrolide drug that robustly extends lifespan in multiple species including worms and mice. Although the beneficial effect of rapamycin on longevity is generally attributed to reduced mTORC1 signaling, disruption of mTORC2 signaling can also influence the longevity of worms, either positively or negatively depending on the temperature and food source.

View Article and Find Full Text PDF