Publications by authors named "Matthew W Wong"

Chronic high salt intake is one of the leading causes of hypertension. Salt activates the release of the key neurotransmitters in the hypothalamus such as vasopressin to increase blood pressure, and neuropepetide Y (NPY) has been implicated in the modulation of vasopressin levels. NPY in the hypothalamic arcuate nucleus (Arc) is best known for its control in appetite and energy homeostasis, but it is unclear whether it is also involved in the development of salt-induced hypertension.

View Article and Find Full Text PDF

The critical role of blood lipids in a broad range of health and disease states is well recognised but less explored is the interplay of genetics and environment within the broader blood lipidome. We examined heritability of the plasma lipidome among healthy older-aged twins (75 monozygotic/55 dizygotic pairs) enrolled in the Older Australian Twins Study (OATS) and explored corresponding gene expression and DNA methylation associations. 27/209 lipids (13.

View Article and Find Full Text PDF

The cell proliferation marker, Ki67 and the immature neuron marker, doublecortin are both expressed in the major human neurogenic niche, the subependymal zone (SEZ), but expression progressively decreases across the adult lifespan (PMID: 27932973). In contrast, transcript levels of several mitogens (transforming growth factor α, epidermal growth factor and fibroblast growth factor 2) do not decline with age in the human SEZ, suggesting that other growth factors may contribute to the reduced neurogenic potential. While insulin like growth factor 1 (IGF1) regulates neurogenesis throughout aging in the mouse brain, the extent to which IGF1 and IGF family members change with age and relate to adult neurogenesis markers in the human SEZ has not yet been determined.

View Article and Find Full Text PDF

Neurogenesis in the subependymal zone (SEZ) declines across the human lifespan, and reduced local neurotrophic support is speculated to be a contributing factor. While tyrosine receptor kinase B (TrkB) signalling is critical for neuronal differentiation, maturation and survival, little is known about subependymal TrkB expression changes during postnatal human life. In this study, we used quantitative PCR and in situ hybridisation to determine expression of the cell proliferation marker Ki67, the immature neuron marker doublecortin (DCX) and both full-length (TrkB-TK+) and truncated TrkB receptors (TrkB-TK-) in the human SEZ from infancy to middle age (n = 26-35, 41 days to 43 years).

View Article and Find Full Text PDF

The brain is highly enriched in lipids, and an intensive study of these lipids may be informative, not only of normal brain function but also of changes with age and in disease. In recent years, the development of highly sensitive mass spectrometry platforms and other high-throughput technologies has enabled the discovery of complex changes in the entire lipidome. This lipidomics approach promises to be a particularly useful tool for identifying diagnostic biomarkers for early detection of age-related neurodegenerative disease, such as Alzheimer's disease (AD), which has till recently been limited to protein- and gene-centric approaches.

View Article and Find Full Text PDF

Purpose Of Review: Alzheimer's disease is the most common cause of dementia. There are still no disease modifying treatments that can cure or slow disease progression. Recently, Alzheimer's disease researchers have attempted to improve early detection and diagnostic criteria for Alzheimer's disease, with the rationale that treatment of disease, or even prevention, may be more successful during the early preclinical stages of Alzheimer's disease when neurodegenerative damage is not as widespread.

View Article and Find Full Text PDF

Neuroblasts exist within the human subependymal zone (SEZ); however, it is debated to what extent neurogenesis changes during normal aging. It is also unknown how precursor proliferation may correlate with the generation of neuronal and glial cells or how expression of growth factors and receptors may change throughout the adult lifespan. We found evidence of dividing cells in the human SEZ (n D 50) in conjunction with a dramatic age-related decline (21-103 years) of mRNAs indicative of proliferating cells (Ki67) and immature neurons (doublecortin).

View Article and Find Full Text PDF