Recent studies of the bacterial enzymes EcMTAN and VcMTAN showed that they have different binding affinities for the same transition state analogue. This was surprising given the similarity of their active sites. We performed transition path sampling simulations of both enzymes to reveal the atomic details of the catalytic chemical step, which may be the key for explaining the inhibitor affinity differences.
View Article and Find Full Text PDFTransition-state analogues of bacterial 5'-methylthioadenosine/S-adenosylhomocysteine nucleosidases (MTANs) disrupt quorum-sensing pathways in Escherichia coli and Vibrio cholerae, demonstrating the potential to limit pathogenicity without placing bacteria under intense selective pressure that leads to antibiotic resistance. Despite the similarity of the crystal structures of E. coli MTAN (EcMTAN) and V.
View Article and Find Full Text PDFThe purpose of this study was to develop a paradigm for quantitative molecular imaging of bone cell activity. We hypothesized the feasibility of non-invasive imaging of the osteoblast enzyme alkaline phosphatase (ALP) using a small imaging molecule in combination with (19)Flourine magnetic resonance spectroscopic imaging ((19)FMRSI). 6, 8-difluoro-4-methylumbelliferyl phosphate (DiFMUP), a fluorinated ALP substrate that is activatable to a fluorescent hydrolysis product was utilized as a prototype small imaging molecule.
View Article and Find Full Text PDFPurpose: Low-molecular weight (LMW) chemotherapeutics are believed to reach tumors through diffusion across capillary beds as well as membrane transporters. Unexpectedly, the delivery of these agents seems to be augmented by reductions in tumor interstitial fluid pressure, an effect typically associated with high-molecular weight molecules that reach tumors principally through convection. We investigated the hypothesis that improved intratumoral convection can alter tumor metabolism and enhance the delivery of a LMW chemotherapeutic agent to solid tumors.
View Article and Find Full Text PDF