Ramp sequences occur when the average translational efficiency of codons near the 5' end of highly expressed genes is significantly lower than the rest of the gene sequence, which counterintuitively increases translational efficiency by decreasing downstream ribosomal collisions. Here, we show that the relative codon adaptiveness within different tissues changes the existence of a ramp sequence without altering the underlying genetic code. We present the first comprehensive analysis of tissue and cell type-specific ramp sequences and report 3108 genes with ramp sequences that change between tissues and cell types, which corresponds with increased gene expression within those tissues and cells.
View Article and Find Full Text PDFThe Alzheimer's Disease Neuroimaging Initiative (ADNI) contains extensive patient measurements (e.g., magnetic resonance imaging [MRI], biometrics, RNA expression, etc.
View Article and Find Full Text PDFHighly multiplexed tissue imaging makes detailed molecular analysis of single cells possible in a preserved spatial context. However, reproducible analysis of large multichannel images poses a substantial computational challenge. Here, we describe a modular and open-source computational pipeline, MCMICRO, for performing the sequential steps needed to transform whole-slide images into single-cell data.
View Article and Find Full Text PDFSynonymous codon usage significantly impacts translational and transcriptional efficiency, gene expression, the secondary structure of both mRNA and proteins, and has been implicated in various diseases. However, population-specific differences in codon usage biases remain largely unexplored. Here, we present a web server, https://cubap.
View Article and Find Full Text PDF