One of the problems facing an ageing population is functional decline associated with reduced levels of physical activity (PA). Traditionally researcher or clinician input is necessary to capture parameters of gait or PA. Enabling older adults to monitor their activity independently could raise their awareness of their activitiy levels, promote self-care and potentially mitigate the risks associated with ageing.
View Article and Find Full Text PDFObservations from laboratory-based gait analysis are difficult to extrapolate to real-world environments where gait behavior is modulated in response to complex environmental conditions and surface profiles. Inertial measurement units (IMUs) permit real-world gait analysis; however, automatic detection of surfaces encountered remains largely unexplored. The aims of this study are to quantify for machine learning models the effect of (1) random and subject-wise data splitting and (2) sensor location and count on surface classification performance.
View Article and Find Full Text PDFAn increasing number of studies across many research fields from biomedical engineering to finance are employing measures of entropy to quantify the regularity, variability or randomness of time series and image data. Entropy, as it relates to information theory and dynamical systems theory, can be estimated in many ways, with newly developed methods being continuously introduced in the scientific literature. Despite the growing interest in entropic time series and image analysis, there is a shortage of validated, open-source software tools that enable researchers to apply these methods.
View Article and Find Full Text PDFBackground: LSVT-BIG® is an intensively delivered, amplitude-oriented exercise therapy reported to improve mobility in individuals with Parkinson's disease (PD). However, questions remain surrounding the efficacy of LSVT-BIG® when compared with similar exercise therapies. Instrumented clinical tests using body-worn sensors can provide a means to objectively monitor patient progression with therapy by quantifying features of motor function, yet research exploring the feasibility of this approach has been limited to date.
View Article and Find Full Text PDFAnnu Int Conf IEEE Eng Med Biol Soc
July 2019
Nonlinear features extracted from surface EMG signals have been previously used to infer information on coherent or synchronous activity in the underlying motor unit discharges. However, it has not yet been assessed how these features are affected by the density of the surface EMG signal, and whether changes in the level of muscle activation can influence the effective detection of correlated motor unit firing. To examine this, a motoneuron pool model receiving a beta-band modulated cortical input was used to generate correlated motor unit firing trains.
View Article and Find Full Text PDFThe Teager-Kaiser energy operator (TKEO), when applied to a signal gives an estimation of the instantaneous energy of that signal. It, therefore, accentuates both frequency and amplitude changes in a signal. To date, it has been primarily used in communications systems and most popularly in electromyographic signal analysis to detect bursts of muscle activity, however, it has the potential to be used in a number of applications including accelerometer and movement data.
View Article and Find Full Text PDFMotor unit firing times are weakly coupled across a range of frequencies during voluntary contractions. Coherent activity within the beta-band (15-35 Hz) has been linked to oscillatory cortical processes, providing evidence of functional connectivity between the motoneuron pool and motor cortex. The aim of this study was to investigate whether beta-band motor unit coherence is altered with increasing abduction force in the first dorsal interosseous muscle.
View Article and Find Full Text PDFIEEE Trans Biomed Eng
March 2020
Objective: A novel method based on the application of the Teager-Kaiser Energy Operator is presented to estimate instances of initial contact (IC) and final contact (FC) from accelerometry during gait. The performance of the proposed method was evaluated against four existing gait event detection (GED) methods under three walking conditions designed to capture the variance of gait in real-world environments.
Methods: A symmetric discrete approximation of the Teager-Kaiser energy operator was used to capture simultaneous amplitude and frequency modulations of the shank acceleration signal at IC and FC during flat treadmill walking, inclined treadmill walking, and flat indoor walking.
Objectives: To investigate differences in surface electromyography (EMG) features in individuals with idiopathic Parkinson's disease (PD) and aged-matched controls.
Methods: Surface EMG was recorded during isometric leg extension in PD patients prior to, and after undergoing a locomotor training programme, and in aged-matched controls. Differences in EMG structure were quantified using determinism (%DET), sample entropy (SampEn) and intermuscular coherence.