Publications by authors named "Matthew V Bilskie"

As coastal regions face escalating risks from flooding in a changing climate, Nature-based Solutions (NbS) have garnered attention as promising adaptation measures to mitigate the destructive impacts of coastal flooding. However, the challenge of compound flooding, which involves the combined effects of multiple flood drivers, demands a deeper understanding of the efficacy of NbS against this complex phenomenon. This manuscript reviews the literature on process-based modeling of NbS for mitigating compound coastal flooding and identifies knowledge gaps to enhance future research efforts.

View Article and Find Full Text PDF

Civil infrastructure will be essential to face the interlinked existential threats of climate change and rising resource demands while ensuring a livable Anthropocene for all. However, conventional infrastructure planning largely neglects the contributions and maintenance of Earth's ecological life support systems, which provide irreplaceable services supporting human well-being. The stability and performance of these services depend on biodiversity, but conventional infrastructure practices, narrowly focused on controlling natural capital, have inadvertently degraded biodiversity while perpetuating social inequities.

View Article and Find Full Text PDF

Global environmental factors (e.g., extreme weather, climate action failure, natural disasters, human environmental damage) increasingly threaten coastal communities.

View Article and Find Full Text PDF

Climate change such as altered frequency and intensity of storm surge from tropical cyclones can cause saltwater intrusion into coastal aquifers. In this study, a reference SEAWAT model and a diagnostic SEAWAT model are developed to simulate the temporal variation of surficial aquifer total dissolved solids (TDS) concentrations after the occurrence of a storm surge for exploration of the effects of storm surge on the extent of saltwater intrusion into the surficial aquifer in coastal east-central Florida (USA). It is indicated from the simulation results that: (1) rapid infiltration and diffusion of overtopping saltwater resulting from storm surge could cause a significant and rapid increase of TDS concentrations in the surficial aquifer right after the occurrence of storm surge; (2) rapid infiltration of freshwater from rainfall could reduce surficial aquifer TDS concentrations beginning from the second year after the occurrence of storm surge in that the infiltrated rainwater could generate an effective hydraulic barrier to impede further inland migration of saltwater and provide a downgradient freshwater discharge for saltwater dilution and flushing counteracting the effects of storm surge on the extent of saltwater intrusion; and (3) infiltrated rainwater might take approximately eight years to dilute and flush the overwhelming majority of infiltrated saltwater back out to the surrounding waterbodies, i.

View Article and Find Full Text PDF

Two distinct microtidal estuarine systems were assessed to advance the understanding of the coastal dynamics of sea level rise in salt marshes. A coupled hydrodynamic-marsh model (Hydro-MEM) was applied to both a marine-dominated (Grand Bay, Mississippi) and a mixed fluvial/marine (Weeks Bay, Alabama) system to compute marsh productivity, marsh migration, and potential tidal inundation from the year 2000 to 2100 under four sea level rise scenarios. Characteristics of the estuaries such as geometry, sediment availability, and topography, were compared to understand their role in the dynamic response to sea level rise.

View Article and Find Full Text PDF