Publications by authors named "Matthew T Trivett"

T cell immunotherapy success is dependent on effective levels of antigen receptor expressed at the surface of engineered cells. Efforts to optimize surface expression in T cell receptor (TCR)-based therapeutic approaches include optimization of cellular engineering methods and coding sequences, and reducing the likelihood of exogenous TCR α and β chains mispairing with the endogenous TCR chains. Approaches to promote correct human TCR chain pairing include constant region mutations to create an additional disulfide bond between the two chains, full murinization of the constant region of the TCR α and β sequences, and a minimal set of murine mutations to the TCR α and β constant regions.

View Article and Find Full Text PDF

doptive ell ransfer (ACT) is a powerful experimental approach to directly study T-cell-mediated immunity In the rhesus macaque AIDS virus model, infusing simian immunodeficiency virus (SIV)-infected animals with CD8 T cells engineered to express anti-SIV T-cell receptor specificities enables direct experimentation to better understand antiviral T-cell immunity Limiting factors in ACT experiments include suboptimal trafficking to, and poor persistence in, the secondary lymphoid tissues targeted by AIDS viruses. Previously, we redirected CD8 T cells to B-cell follicles by ectopic expression of the CXCR5 homing protein. Here, we modify peripheral blood mononuclear cell (PBMC)-derived CD8 T cells to express the CCR9 chemokine receptor, which induces preferential homing of the engineered cells to the small intestine, a site of intense early AIDS virus replication and pathology in rhesus macaques.

View Article and Find Full Text PDF

HIV and SIV infection dynamics are commonly investigated by measuring plasma viral loads. However, this total viral load value represents the sum of many individual infection events, which are difficult to independently track using conventional sequencing approaches. To overcome this challenge, we generated a genetically tagged virus stock (SIVmac239M) with a 34-base genetic barcode inserted between the vpx and vpr accessory genes of the infectious molecular clone SIVmac239.

View Article and Find Full Text PDF

Follicular helper CD4 T cells, T, residing in B-cell follicles within secondary lymphoid tissues, are readily infected by AIDS viruses and are a major source of persistent virus despite relative control of viral replication. This persistence is due at least in part to a relative exclusion of effective antiviral CD8 T cells from B-cell follicles. To determine whether CD8 T cells could be engineered to enter B-cell follicles, we genetically modified unselected CD8 T cells to express CXC chemokine receptor 5 (CXCR5), the chemokine receptor implicated in cellular entry into B-cell follicles.

View Article and Find Full Text PDF
Article Synopsis
  • - The study investigates how cell-mediated immunity affects the establishment of AIDS virus infections, particularly focusing on the role of antiviral T cells during early infection phases.
  • - Researchers transferred engineered T cells with specific anti-SIV activity to rhesus macaques shortly after SIV exposure, and results showed that the treated animals transmitted fewer viral genotypes compared to controls.
  • - The findings suggest that a robust T-cell response, especially if established prior to infection, can significantly reduce viral transmission and might have implications for vaccine development in preventing AIDS virus infections in humans.
View Article and Find Full Text PDF

To study CD4(+)T-cell suppression of AIDS virus replication, we isolated nine rhesus macaque SIVGag-specific CD4(+)T-cell clones. One responding clone, Gag68, produced a typical cytotoxic CD8(+)T-cell response: induction of intracellular IFN-γ, MIP-1α, MIP-1β, and CD107a degranulation. Gag68 effectively suppressed the spread of SIVmac239 in CD4(+)T cells with a corresponding reduction of infected Gag68 effector cells, suggesting that CD4(+)effectors need to suppress their own infection in addition to their targets to be effective.

View Article and Find Full Text PDF

Background: The TRIM5α protein is a principal restriction factor that contributes to an HIV-1 replication block in rhesus macaque CD4+ T cells by preventing reverse transcription. HIV-1 restriction is induced in human CD4+ T cells by expression of rhesus TRIM5α as well as those of other old world monkeys. While TRIM5α restriction has been extensively studied in single-round infection assays, fewer studies have examined restriction after extended viral replication.

View Article and Find Full Text PDF

Here we present an improved strategy for producing T-cell receptor (TCR)-expressing retroviral vectors using a Golden Gate cloning strategy. This method takes advantage of the modular nature of TCR genes by directly amplifying TCR α and β variable regions from RNA or cDNA, then cloning and fusing them with their respective constant region genes resident in a retroviral TCR expression vector. Our one-step approach greatly streamlines the TCR vector production process in comparison to the traditional three-step procedure that typically involves cloning whole TCR genes, producing a TCR expression cassette, and constructing a retroviral construct.

View Article and Find Full Text PDF

Unlabelled: The expression of xenogeneic TRIM5α proteins can restrict infection in various retrovirus/host cell pairings. Previously, we have shown that African green monkey TRIM5α (AgmTRIM5α) potently restricts both human immunodeficiency virus type 1 (HIV-1) and simian immunodeficiency virus mac239 (SIV(mac239)) replication in a transformed human T-cell line (L. V.

View Article and Find Full Text PDF

Although the study of non-human primates has resulted in important advances for understanding HIV-specific immunity, a clear correlate of immune control over simian immunodeficiency virus (SIV) replication has not been found to date. In this study, CD8(+) T-cell cytotoxic capacity was examined to determine whether this function is a correlate of immune control in the rhesus macaque (RM) SIV infection model as has been suggested in chronic HIV infection. SIVmac251-infected human reverse transcriptase (hTERT)-transduced CD4(+) T-cell clone targets were co-incubated with autologous macaque effector cells to measure infected CD4(+) T-cell elimination (ICE).

View Article and Find Full Text PDF

Background: The SIV/rhesus macaque model for HIV/AIDS is a powerful system for examining the contribution of T cells in the control of AIDS viruses. To better our understanding of CD8(+) T-cell control of SIV replication in CD4(+) T cells, we asked whether TCRs isolated from rhesus macaque CD8(+) T-cell clones that exhibited varying abilities to suppress SIV replication could convey their suppressive properties to CD8(+) T cells obtained from an uninfected/unvaccinated animal.

Principal Findings: We transferred SIV-specific TCR genes isolated from rhesus macaque CD8(+) T-cell clones with varying abilities to suppress SIV replication in vitro into CD8(+) T cells obtained from an uninfected animal by retroviral transduction.

View Article and Find Full Text PDF

Studies using transformed human cell lines suggest that most SIV strains use CCR5 as co-receptor. Our analysis of primary rhesus macaque CD4(+) T-cell clones revealed marked differences in susceptibility to SIV(mac)239 infection. We investigated whether different levels of CCR5 expression account for clonal differences in SIV(mac)239 susceptibility.

View Article and Find Full Text PDF

Naïve Indian rhesus macaques were immunized with a mixture of optimized plasmid DNAs expressing several SIV antigens using in vivo electroporation via the intramuscular route. The animals were monitored for the development of SIV-specific systemic (blood) and mucosal (bronchoalveolar lavage) cellular and humoral immune responses. The immune responses were of great magnitude, broad (Gag, Pol, Nef, Tat and Vif), long-lasting (up to 90 weeks post third vaccination) and were boosted with each subsequent immunization, even after an extended 90-week rest period.

View Article and Find Full Text PDF

Plasma viremia decreases coincident with the appearance of virus-specific CD8(+) T cells during acute HIV or SIV infection. This finding, along with demonstrations of viral mutational escape from CD8(+) T cell responses and transient increase in plasma viremia after depletion of CD8(+) T cells in SIV-infected monkeys strongly suggest a role for CD8(+) T cells in controlling HIV/SIV. However, direct quantitative or qualitative correlates between CD8(+) T cell activity and virus control have not been established.

View Article and Find Full Text PDF

Despite multiple lines of evidence suggesting their involvement, the precise role of CD8(+) T cells in controlling HIV replication remains unclear. To determine whether CD8(+) T cells can limit retroviral replication in the absence of other immune responses, we transferred 1-13 x 10(9) allogeneic in vitro expanded SIV-specific CD8(+) T cell clones matched for the relevant restricting MHC-I allele into rhesus macaques near the time of i.v.

View Article and Find Full Text PDF

CD8(+) T lymphocytes (CTL) play a role in controlling HIV/SIV infection. CTL antiviral activity is dependent on recognition of antigenic peptides associated with MHC class I molecules on infected target cells, and CTL activation can be impaired by Nef-mediated down-regulation of MHC class I molecules. We tested the ability of a series of rhesus macaque CD8(+) T-cell clones specific for the SIV Gag CM9 peptide to suppress SIV infection of autologous CD4(+) T cells.

View Article and Find Full Text PDF

CD8(+) cytotoxic T lymphocytes (CTL) play an important role in controlling virus replication in HIV- and SIV-infected humans and monkeys, respectively. Three well-studied SIV CTL determinants are the two Mamu A()01-restricted epitopes Gag CM9 and Tat SL8, and the Mamu B()17-restricted epitope Nef IW9. Point mutations leading to amino acid replacements in these epitopes have been reported to mediate SIV escape from CTL control.

View Article and Find Full Text PDF

CD8(+) cytotoxic T lymphocyte (CTL) responses play an important role in controlling the replication of primate lentiviruses. Induction of these responses is a key objective for most current AIDS vaccine approaches. Despite a variety of approaches for measuring properties and activities of CTL, the functions responsible for controlling viral replication in vivo have not been clearly identified.

View Article and Find Full Text PDF

T cell lines and clones play a key role in basic studies of cellular immunology, and are also finding applications in adoptive immunotherapy. However, with proliferative expansion, T cells ultimately undergo cellular senescence and death, so that long-term culture of T cell clones is difficult to achieve. Expression of telomerase reverse transcriptase (TERT) in differentiated cells can maintain telomere length over many cell divisions, preventing senescence.

View Article and Find Full Text PDF

Background: Immunophenotyping of whole blood (WB) and isolated peripheral blood mononuclear cells (PBMCs) is a common tool used to evaluate immune system changes in clinical studies. The development of methods that would allow preservation of samples for flow cytometric analysis is important for the extension of this technology to field testing in settings where the equipment might be not readily accessible.

Methods: Three-color flow cytometric analysis was used to determine percentages of T cells and their subsets (CD3(+), CD4(+), CD8(+)), B cells (CD19(+)), and natural killer cells (CD16(+)/56(+)) in WB and PBMCs using variations of a standard stain/fix WB staining procedure (Optilyse) that included staining following fixation and freezing of fixed samples before or after staining.

View Article and Find Full Text PDF