We have developed a planar absolute radiometer for room temperature (PARRoT) that will replace the legacy C-series calorimeter as the free-space continuous-wave laser power detector standard at the National Institute of Standards and Technology (NIST). This instrument will lower the combined relative expanded measurement uncertainty (k = 2) from 0.84 % to 0.
View Article and Find Full Text PDFJ Res Natl Inst Stand Technol
June 2021
To calibrate laser power and energy meters, the National Institute of Standards and Technology (NIST) uses several detector-based realizations of the scale for optical radiant flux; these realizations are appropriate for specific laser power/energy ranges and optical coupling configurations. Calibrations from 1 µW to 2 W are currently based upon calorimeters. Validation by comparisons against other primary representations of the optical watt over the last two decades suggests the instruments operate well within their typical reported uncertainty level of 0.
View Article and Find Full Text PDFWe demonstrate improved manufacturability of spectrally flat detectors for visible to mid-infrared wavelengths by characterizing a carbon nanotube spray coating compatible with lithium tantalate and other thermal sensors. Compared against previous spray coatings, it demonstrated the highest responsivity yet attained due to both higher absorptivity and thermal diffusivity, while also being matured to a commercially available product. It demonstrated spectral nonuniformity from 300 nm to 12 μm less than 1% with uncertainty (k=2) under 0.
View Article and Find Full Text PDF