We study the pseudogap Anderson model as a prototype system for critical Kondo destruction. We obtain finite-temperature (T) scaling functions near its quantum-critical point, by using a continuous-time quantum Monte Carlo method and also considering a dynamical large-N limit. We are able to determine the behavior of the scaling functions in the typically difficult to access quantum-relaxational regime (ℏω
The quantum phase transition between paramagnetic and antiferromagnetic phases of the Kondo lattice model with Ising anisotropy in the intersite exchange is studied within extended dynamical mean-field theory. Nonperturbative numerical solutions at zero temperature point to a continuous transition for both two- and three-dimensional magnetism. In the former case, the transition is associated with critical local physics, characterized by a vanishing Kondo scale and by an anomalous exponent in the dynamics close in value to that measured in heavy-fermion CeCu5.
View Article and Find Full Text PDFThe pseudogap Anderson impurity model is a paradigm for locally critical quantum phase transitions. Within the framework of the local moment approach we study its finite-T dynamics, as embodied in the single-particle spectrum, in the vicinity of the symmetric quantum critical point (QCP) separating generalized Fermi liquid (Kondo screened) and local moment phases. The scaling spectra in both phases, and at the QCP itself, are obtained analytically.
View Article and Find Full Text PDFWe extend the numerical renormalization-group method to Bose-Fermi Kondo models (BFKMs), describing a local moment coupled to a conduction band and a dissipative bosonic bath. We apply the method to the Ising-symmetry BFKM with a bosonic bath spectral function eta(omega) proportional omega(s), of interest in connection with heavy-fermion criticality. For 0 < s < 1, an interacting critical point, characterized by hyperscaling of exponents and omega/T scaling, describes a quantum phase transition between Kondo-screened and localized phases.
View Article and Find Full Text PDF