We observe a series of conical intersections in the potential energy curves governing both the collision between a Rydberg atom and a ground-state atom and the structure of Rydberg molecules. By employing the electronic energy of the Rydberg atom as a synthetic dimension we circumvent the von Neumann-Wigner theorem. These conical intersections can occur when the Rydberg atom's quantum defect is similar in size to the electron-ground-state atom scattering phase shift divided by π, a condition satisfied in several commonly studied atomic species.
View Article and Find Full Text PDFWe predict the existence of a universal class of ultralong-range Rydberg molecular states whose vibrational spectra form trimmed Rydberg series. A dressed ion-pair model captures the physical origin of these exotic molecules, accurately predicts their properties, and reveals features of ultralong-range Rydberg molecules and heavy Rydberg states with a surprisingly small Rydberg constant. The latter is determined by the small effective charge of the dressed anion, which outweighs the contribution of the molecule's large reduced mass.
View Article and Find Full Text PDFThe long-range dipole-dipole interaction can create delocalized states due to the exchange of excitation between Rydberg atoms. We show that even in a random gas many of the single-exciton eigenstates are surprisingly delocalized, composed of roughly one quarter of the participating atoms. We identify two different types of eigenstates: one which stems from strongly-interacting clusters, resulting in localized states, and one which extends over large delocalized networks of atoms.
View Article and Find Full Text PDFPhys Rev Lett
September 2018
At high energies, single-photon photodetachment of alkali negative ions populates final states where both the ejected electron and the residual valence electron possess high angular momenta. The photodetached electron interacts strongly with the anisotropic core, and thus the partial cross sections for these channels display non-Wigner threshold behavior reflecting these large, and occasionally repulsive, interactions. Our fully quantum-mechanical theoretical study enables a deeper interpretation of these partial cross sections.
View Article and Find Full Text PDFThe "trilobite"-type of molecule, predicted in 2000 and observed experimentally in 2015, arises when a Rydberg electron exerts a weak attractive force on a neutral ground state atom. Such molecules have bond lengths exceeding 100 nm. The ultralong-range chemical bond between the two atoms is a nonperturbative linear combination of the many degenerate electronic states associated with high principal quantum numbers, and the resulting electron probability distribution closely resembles a fossil trilobite from antiquity.
View Article and Find Full Text PDFPhys Rev Lett
November 2015
A generalized class of ultralong-range Rydberg molecules is predicted which consist of a multichannel Rydberg atom whose outermost electron creates a chemical bond with a distant ground state atom. Such multichannel Rydberg molecules exhibit favorable properties for laser excitation, because states exist where the quantum defect varies strongly with the principal quantum number. The resulting occurrence of near degeneracies with states of high orbital angular momentum promotes the admixture of low l into the high l deeply bound "trilobite" molecule states, thereby circumventing the usual difficulty posed by electric dipole selection rules.
View Article and Find Full Text PDF