Few estimates of migration rates or descriptions of behavior or survival exist for wild populations of out-migrating Pacific salmon smolts from natal freshwater rearing areas to the ocean. Using acoustic transmitters and fixed receiver arrays across four years (2010-2013), we tracked the migration of > 1850 wild sockeye salmon (Oncorhynchus nerka) smolts from Chilko Lake, British Columbia, to the coastal Pacific Ocean (> 1000 km distance). Cumulative survival to the ocean ranged 3-10% among years, although this may be slightly underestimated due to technical limitations at the final receiver array.
View Article and Find Full Text PDFAerobic scope (AS) has been proposed as a functional measurement that can be used to make predictions about the thermal niche of aquatic ectotherms and hence potential fitness outcomes under future warming scenarios. Some salmonid species and populations, for example, have been reported to exhibit different thermal profiles for their AS curves such that AS peaks around the modal river temperature encountered during the upriver spawning migration, suggesting species- and population-level adaptations to river temperature regimes. Interestingly, some other salmonid species and populations have been reported to exhibit AS curves that maintain an upwards trajectory throughout the ecologically relevant temperature range rather than peaking at a modal temperature.
View Article and Find Full Text PDFWe present the first data to link physiological responses and pathogen presence with subsequent fate during migration of wild salmonid smolts. We tagged and non-lethally sampled gill tissue from sockeye salmon (Oncorhynchus nerka) smolts as they left their nursery lake (Chilko Lake, BC, Canada) to compare gene expression profiles and freshwater pathogen loads with migration success over the first ~1150 km of their migration to the North Pacific Ocean using acoustic telemetry. Fifteen per cent of smolts were never detected again after release, and these fish had gene expression profiles consistent with an immune response to one or more viral pathogens compared with fish that survived their freshwater migration.
View Article and Find Full Text PDFWild riverine fishes are known to rely on burst swimming to traverse hydraulically challenging reaches, and yet there has been little investigation as to whether swimming anaerobically in areas of high flow can lead to delayed mortality. Using acoustic accelerometer transmitters, we estimated the anaerobic activity of anadromous adult sockeye salmon (Oncorhynchus nerka) in the tailrace of a diversion dam in British Columbia, Canada, and its effects on the remaining 50 km of their freshwater spawning migration. Consistent with our hypothesis, migrants that elicited burst swimming behaviors in high flows were more likely to succumb to mortality following dam passage.
View Article and Find Full Text PDFTemperature affects processes at all levels of biological organization, but it is unclear whether processes at different levels have similar thermal optima (T(opt)). Here, we compare the T(opt) for aerobic scope, a whole-organism measure of performance, with both the Arrhenius breakpoint temperature for maximum heart rate (HR-ABT), a measure of tissue level performance, and the temperature at which AMP-activated protein kinase (AMPK) is phosphorylated in the heart, an indicator of an increase in dependence on anaerobic energy metabolism at the cellular level in juvenile rainbow trout Oncorhynchus mykiss. The T(opt) for aerobic scope was 19°C, with aerobic scope being maintained at ≥90% of maximum (termed a "T(opt) window") from 16.
View Article and Find Full Text PDF