Purpose: The specific aims of this paper are to (1) develop and operationalize an electronic health record (EHR) data quality framework, (2) apply the dimensions of the framework to the phenotype and treatment pathways of ductal carcinoma in situ (DCIS) using Research Program data, and (3) propose and apply a checklist to evaluate the application of the framework.
Methods: We developed a framework of five data quality dimensions (DQD; completeness, concordance, conformance, plausibility, and temporality). Participants signed a consent and Health Insurance Portability and Accountability Act authorization to share EHR data and responded to demographic questions in the Basics questionnaire.
Introduction: Electronic Health Records (EHR) are a useful data source for research, but their usability is hindered by measurement errors. This study investigated an automatic error detection algorithm for adult height and weight measurements in EHR for the All of Us Research Program (All of Us).
Methods: We developed reference charts for adult heights and weights that were stratified on participant sex.
Background: Current hemovigilance methods generally rely on survey data or administrative claims data utilizing billing and revenue codes, each of which has limitations. We used electronic health records (EHR) linked to blood bank data to comprehensively characterize red blood cell (RBC) utilization patterns and trends in three healthcare systems participating in the U.S.
View Article and Find Full Text PDFDiagnosis for rare genetic diseases often relies on phenotype-driven methods, which hinge on the accuracy and completeness of the rare disease phenotypes in the underlying annotation knowledgebase. Existing knowledgebases are often manually curated with additional annotations found in published case reports. Despite their potential, real-world data such as electronic health records (EHRs) have not been fully exploited to derive rare disease annotations.
View Article and Find Full Text PDFEasy access to large quantities of accurate health data is required to understand medical and scientific information in real-time; evaluate public health measures before, during, and after times of crisis; and prevent medical errors. Introducing a system in the USA that allows for efficient access to such health data and ensures auditability of data facts, while avoiding data silos, will require fundamental changes in current practices. Here, we recommend the implementation of standardized data collection and transmission systems, universal identifiers for individual patients and end users, a reference standard infrastructure to support calibration and integration of laboratory results from equivalent tests, and modernized working practices.
View Article and Find Full Text PDFStud Health Technol Inform
June 2022
Measurement concepts are essential to observational healthcare research; however, a lack of concept harmonization limits the quality of research that can be done on multisite research networks. We developed five methods that used a combination of automated, semi-automated and manual approaches for generating measurement concept sets. We validated our concept sets by calculating their frequencies in cohorts from the Columbia University Irving Medical Center (CUIMC) database.
View Article and Find Full Text PDFIntroduction: Efforts to characterize variability in epilepsy treatment pathways are limited by the large number of possible antiseizure medication (ASM) regimens and sequences, heterogeneity of patients, and challenges of measuring confounding variables and outcomes across institutions. The Observational Health Data Science and Informatics (OHDSI) collaborative is an international data network representing over 1 billion patient records using common data standards. However, few studies have applied OHDSI's Common Data Model (CDM) to the population with epilepsy and none have validated relevant concepts.
View Article and Find Full Text PDFMany patients with bipolar disorder (BD) are initially misdiagnosed with major depressive disorder (MDD) and are treated with antidepressants, whose potential iatrogenic effects are widely discussed. It is unknown whether MDD is a comorbidity of BD or its earlier stage, and no consensus exists on individual conversion predictors, delaying BD's timely recognition and treatment. We aimed to build a predictive model of MDD to BD conversion and to validate it across a multi-national network of patient databases using the standardization afforded by the Observational Medical Outcomes Partnership (OMOP) common data model.
View Article and Find Full Text PDFMulti-center observational studies require recognition and reconciliation of differences in patient representations arising from underlying populations, disparate coding practices and specifics of data capture. This leads to different granularity or detail of concepts representing the clinical facts. For researchers studying certain populations of interest, it is important to ensure that concepts at the right level are used for the definition of these populations.
View Article and Find Full Text PDF