Interleukin-17 plays a major role in controlling adipose tissue homeostasis. In a recent study published in Nature, Douglas et al. demonstrate that time-of-day-dependent expression of interleukin-17 by tissue-resident innate lymphocytes in the adipose tissue drives circadian regulation of adipose tissue homeostasis and function.
View Article and Find Full Text PDFDiabetic kidney disease (DKD) is the leading cause of end stage kidney failure worldwide, of which cellular insulin resistance is a major driver. Here, we study key human kidney cell types implicated in DKD (podocytes, glomerular endothelial, mesangial and proximal tubular cells) in insulin sensitive and resistant conditions, and perform simultaneous transcriptomics and proteomics for integrated analysis. Our data is further compared with bulk- and single-cell transcriptomic kidney biopsy data from early- and advanced-stage DKD patient cohorts.
View Article and Find Full Text PDFThe meningeal space is a critical brain structure providing immunosurveillance for the central nervous system (CNS), but the impact of infections on the meningeal immune landscape is far from being fully understood. The extracellular protozoan parasite Trypanosoma brucei, which causes human African trypanosomiasis (HAT) or sleeping sickness, accumulates in the meningeal spaces, ultimately inducing severe meningitis and resulting in death if left untreated. Thus, sleeping sickness represents an attractive model to study immunological dynamics in the meninges during infection.
View Article and Find Full Text PDFAfrican trypanosomes colonise the skin to ensure parasite transmission. However, how the skin responds to trypanosome infection remains unresolved. Here, we investigate the local immune response of the skin in a murine model of infection using spatial and single cell transcriptomics.
View Article and Find Full Text PDFSleeping sickness is caused by the extracellular parasite and is associated with neuroinflammation and neuropsychiatric disorders, including disruption of sleep/wake patterns, and is now recognised as a circadian disorder. Sleeping sickness is traditionally studied using murine models of infection due to the lack of alternative systems that fully recapitulate the cellular diversity and functionality of the human brain. The aim of this study is to develop a much-needed system that reduces and replaces live animals for the study of infections in the central nervous system, using sleeping sickness as a model infection.
View Article and Find Full Text PDFThe liver performs a multitude of bodily functions, whilst retaining the ability to regenerate damaged tissue. In this review, we discuss sex steroid biology, regulation of mammalian liver physiology and the development of new model systems to improve our understanding of liver biology in health and disease. A major risk factor for the development of liver disease is hepatic fibrosis.
View Article and Find Full Text PDFThis commentary focuses on the necessity for LGBTQ+ people working in academia to feel safe, without fear of repercussions for revealing or expressing their identity. I discuss the importance of uncoupling people's appearance and identity from their research. I also include perspectives on how visible allyship can improve feelings of safety, which can help people to be more creative and productive in the workplace.
View Article and Find Full Text PDFExposure to early life stress (ELS) during childhood or prenatally increases the risk of future psychiatric disorders. The effect of stress exposure during the neonatal period is less well understood. In preterm infants, exposure to invasive procedures is associated with altered brain development and future stress responses suggesting that the neonatal period could be a key time for the programming of mental health.
View Article and Find Full Text PDFThis protocol describes the production of hepatocyte-like cells (HLCs) from human pluripotent stem cells and how to induce hepatic steatosis, a condition characterized by intracellular lipid accumulation. Following differentiation to an HLC phenotype, intracellular lipid accumulation is induced with a steatosis induction cocktail, allowing the user to examine the cellular processes that underpin hepatic steatosis. Furthermore, the renewable nature of our system, on a defined genetic background, permits in-depth mechanistic analysis, which may facilitate therapeutic target identification in the future.
View Article and Find Full Text PDFNonalcoholic fatty liver disease (NAFLD) is currently the most prevalent form of liver disease worldwide. This term encompasses a spectrum of pathologies, from benign hepatic steatosis to non-alcoholic steatohepatitis, which have, to date, been challenging to model in the laboratory setting. Here, we present a human pluripotent stem cell (hPSC)-derived model of hepatic steatosis, which overcomes inherent challenges of current models and provides insights into the metabolic rewiring associated with steatosis.
View Article and Find Full Text PDFBone marrow adipose tissue (BMAT) comprises >10% of total adipose mass, yet unlike white or brown adipose tissues (WAT or BAT) its metabolic functions remain unclear. Herein, we address this critical gap in knowledge. Our transcriptomic analyses revealed that BMAT is distinct from WAT and BAT, with altered glucose metabolism and decreased insulin responsiveness.
View Article and Find Full Text PDFNon-alcoholic fatty liver disease (NAFLD) is estimated to affect 24% of the global adult population. NAFLD is a major risk factor for the development of cirrhosis and hepatocellular carcinoma, as well as being strongly associated with type 2 diabetes and cardiovascular disease. It has been proposed that up to 88% of obese adults have NAFLD, and with global obesity rates increasing, this disease is set to become even more prevalent.
View Article and Find Full Text PDF