Soluble oxalate accumulates in rice leaves, and it causes mineral deficiency and urinary syndrome in livestock that consume the leaves. In our previous study, we found that the oxalate content was higher in the leaves of Koshihikari ( type cultivar) than in those of Takanari ( type cultivar). This difference was seen even when the two cultivars were grown under a high CO concentration, which inhibits oxalate synthesis via photorespiration, suggesting that the difference resulted from genetic factors rather than environmental factors.
View Article and Find Full Text PDFBackground: Transcriptome-based prediction of complex phenotypes is a relatively new statistical method that links genetic variation to phenotypic variation. The selection of large-effect genes based on a priori biological knowledge is beneficial for predicting oligogenic traits; however, such a simple gene selection method is not applicable to polygenic traits because causal genes or large-effect loci are often unknown. Here, we used several gene-level features and tested whether it was possible to select a gene subset that resulted in better predictive ability than using all genes for predicting a polygenic trait.
View Article and Find Full Text PDFRoot system architecture plays a crucial role in nutrient and water absorption during rice production. Genetic improvement of the rice root system requires elucidating its genetic control. Genome-wide association studies (GWASs) have identified genomic regions responsible for rice root phenotypes.
View Article and Find Full Text PDFPlants release various metabolites from roots and root exudates contribute to differences in stress tolerance among plant species. Plant and soil microbes have complex interactions that are affected by biotic and abiotic factors. The purpose of this study was to examine the differences in metabolites in root exudates of rice (Oryza sativa) cultivars and their correlation with bacterial populations in the rhizosphere.
View Article and Find Full Text PDFVarious diterpene synthases have been functionally identified in cultivated rice (Oryza sativa). These are the homologs of ent-copalyl diphosphate (ent-CDP) synthase and ent-kaurene synthase (KS) that are responsible for the biosynthesis of gibberellins, diterpenoid phytohormones. We isolated a cDNA encoding full-length OsKSL12, a previously uncharacterized KS like (KSL) enzyme that consists of a β-domain and an α-domain with an active center, but lacks an N-terminal γ-domain.
View Article and Find Full Text PDFThe Rice Core Collection of Japanese Landraces (JRC) consisting of 50 accessions was developed by the genebank at the National Agriculture and Food Research Organization (NARO) in 2008. As a Japanese landrace core collection, the JRC has been used for many research projects, including screening for different phenotypes and allele mining for target genes. To understand the genetic diversity of Japanese Landraces, we performed whole-genome resequencing of these 50 accessions and obtained a total of 2,145,095 single nucleotide polymorphism (SNPs) and 317,832 insertion-deletions (indels) by mapping against the Oryza sativa ssp.
View Article and Find Full Text PDFInt J Mol Sci
August 2020
Rice ( L [...
View Article and Find Full Text PDFGibberellins (GAs) are labdane-related diterpenoid phytohormones that regulate various aspects of higher plant growth. A biosynthetic intermediate of GAs is ent-kaurene, a tetra-cyclic diterpene that is produced through successive cyclization of geranylgeranyl diphosphate catalyzed by the two distinct monofunctional diterpene synthases-ent-copalyl diphosphate synthase (ent-CPS) and ent-kaurene synthase (KS). Various homologous genes of the two diterpene synthases have been identified in cereals, including rice (Oryza sativa), wheat (Triticum aestivum) and maize (Zea mays), and are believed to have been derived from GA biosynthetic ent-CPS and KS genes through duplication and neofunctionalization.
View Article and Find Full Text PDFOryza officinalis is an accessible alien donor for genetic improvement of rice. Comparison across a representative panel of Oryza species showed that the wild O. officinalis and cultivated O.
View Article and Find Full Text PDFCultivated rice (Oryza sativa) possesses various labdane-related diterpene synthase genes, homologs of ent-copalyl diphosphate synthase (CPS) and ent-kaurene synthase (KS) that are responsible for the biosynthesis of phytohormone gibberellins. The CPS homologs and KS like (KSL) homologs successively converted geranylgeranyl diphosphate to cyclic diterpene hydrocarbons via ent-copalyl diphosphate or syn-copalyl diphosphate in O. sativa.
View Article and Find Full Text PDFPlants frequently possess operon-like gene clusters for specialized metabolism. Cultivated rice, Oryza sativa, produces antimicrobial diterpene phytoalexins represented by phytocassanes and momilactones, and the majority of their biosynthetic genes are clustered on chromosomes 2 and 4, respectively. These labdane-related diterpene phytoalexins are biosynthesized from geranylgeranyl diphosphate via ent-copalyl diphosphate or syn-copalyl diphosphate.
View Article and Find Full Text PDFDefensive and reproductive protein genes undergo rapid evolution. Small, cysteine-rich secreted peptides (CRPs) act as antimicrobial agents and function in plant intercellular signaling and are over-represented among reproductively expressed proteins. Because of their roles in defense, reproduction and development and their presence in multigene families, CRP variation can have major consequences for plant phenotypic and functional diversification.
View Article and Find Full Text PDFEarly interactions between invading penetration hyphae of the pathogenic fungus Magnaporthe oryzae and rice cells occur at the apoplast, the free diffusional space outside the plasma membrane of leaves. After initial colonization, intercellular hyphae are again in intimate contact with the rice apoplast. While several studies have looked at proteomics in rice-Magnaporthe interactions, none have focused on apoplast localized proteins.
View Article and Find Full Text PDFUV-B, UV-A and blue light control a variety of aspects of plant development via distinct photoreceptors and signalling pathways. The known photoreceptors for UV-A/blue light are cryptochrome (cry)1 and cry2, and the phototropism photoreceptor, phototropin. Redox processes are important in cry and phototropin signal transduction.
View Article and Find Full Text PDF