Summary: We describe the problem of computing local feature attributions for dimensionality reduction methods. We use one such method that is well established within the context of supervised classification-using the gradients of target outputs with respect to the inputs-on the popular dimensionality reduction technique t-SNE, widely used in analyses of biological data. We provide an efficient implementation for the gradient computation for this dimensionality reduction technique.
View Article and Find Full Text PDFZebrafish show great potential for behavioral neuroscience. Promising lines of research, however, require the development and validation of software tools that will allow automated and cost-effective behavioral analysis. Building on our previous work with the RealFishTracker (in-house-developed tracking system), we present Argus, a data extraction and analysis tool built in the open-source R language for behavioral researchers without any expertise in R.
View Article and Find Full Text PDF