Intrinsically photosensitive retinal ganglion cells (ipRGCs) combine direct photosensitivity through melanopsin with synaptically mediated drive from classical photoreceptors through bipolar-cell input. Here, we sought to provide a fuller description of the least understood ipRGC type, the M5 cell, and discovered a distinctive functional characteristic-chromatic opponency (ultraviolet excitatory, green inhibitory). Serial electron microscopic reconstructions revealed that M5 cells receive selective UV-opsin drive from Type 9 cone bipolar cells but also mixed cone signals from bipolar Types 6, 7, and 8.
View Article and Find Full Text PDFThe resistive-pulse technique has been used to detect and size objects which pass through a single pore. The amplitude of the ion current change observed when a particle is in the pore is correlated with the particle volume. Up to date, however, the resistive-pulse approach has not been able to distinguish between objects of similar volume but different shapes.
View Article and Find Full Text PDFPores with undulating opening diameters have emerged as an analytical tool enhancing the speed of resistive-pulse experiments, with a potential to simultaneously characterize size and mechanical properties of translocating objects. In this work, we present a detailed study of the characteristics of resistive-pulses of charged and uncharged polymer particles in pores with different aspect ratios and pore topography. Although no external pressure difference was applied, our experiments and modeling indicated the existence of local pressure drops, which modified axial and radial velocities of the solution.
View Article and Find Full Text PDFIn this article, we report detection of deformable, hydrogel particles by the resistive-pulse technique using single pores in a polymer film. The hydrogels pass through the pores by electroosmosis and cause formation of a characteristic shape of resistive pulses indicating the particles underwent dehydration and deformation. These effects were explained via a non-homogeneous pressure distribution along the pore axis modeled by the coupled Poisson-Nernst-Planck and Navier-Stokes equations.
View Article and Find Full Text PDF