Publications by authors named "Matthew Santangelo"

Medication administration via enteral feeding tubes (EFT) is a necessary practice for patients unable to swallow oral dosage forms due to a medical condition or treatment that affects the ability to swallow or the function of the gastrointestinal tract. Off-label administration of oral drug products via EFT raises concerns for pharmaceutical sponsors, regulators, and healthcare practitioners (HCPs) because of the potential risks this practice introduces to both the patient and the caregiver. These risks can be mitigated by generating data-supported instructions that patients and HCPs can use to ensure safe and accurate administration of oral drug products via EFT.

View Article and Find Full Text PDF

Administration of medication via enteral feeding tubes (EFT) is common in cases where patients are unable to swallow the dosage form or a patient is intubated. The SARS-CoV-2 (COVID-19, coronavirus disease 2019) epidemic created a need to rapidly evaluate potential treatment options to address the global pandemic including evaluation of azithromycin (AZM) as a mono or combination therapy. Due to the complicating medical conditions of COVID-19, in some cases patients may be unable to take medication orally and could require medication administration by alternate routes such as an EFT.

View Article and Find Full Text PDF
Article Synopsis
  • A two-day workshop on pediatric formulation development was held in June 2019, organized by M-CERSI, the FDA, and the IQ Drug Product Pediatric PWG, bringing together diverse participants from industry, regulatory bodies, and academia.
  • The workshop included sessions that covered formulation challenges, analytical strategies, clinical considerations, and regulatory insights, with a focus on improving drug product acceptability for pediatric use.
  • Key topics discussed involved dosing vehicle selection, the impact of pediatric pharmacokinetics on drug design, regional regulatory differences, and collaboration opportunities for advancing pediatric formulations.
View Article and Find Full Text PDF

Among the factors that influence adherence to medication within the pediatric population, taste/irritation has been identified as a critical barrier to patient compliance. With the goal of improving compliance, microspheres (matrix systems within which the drug is dispersed) can be coated with a reverse enteric polymer that will prevent the release of the drug in the oral cavity while maintaining an immediate release once the drug product reaches the stomach, thereby achieving a taste neutral profile. In this work, the in-line performance of three process analytical technology (PAT) tools is evaluated in order to monitor the microsphere coating process.

View Article and Find Full Text PDF

Taste is routinely cited as one of the major contributing factors that negatively influence pediatric patient compliance. A promising solution is coated microsphere systems, which provide doses of active pharmaceutical ingredients (API) subdivided into a plurality of small dosage units. In this work, the microspheres were coated with Kollicoat® Smartseal, a reverse enteric polymer, which acts to minimize or prevent the release of API in the neutral pH of the oral cavity, which results in a masking effect of the unpleasant taste of the API.

View Article and Find Full Text PDF

The benefits of Raman signal enhancement and improved measurement precision are demonstrated using 180° backscattering Fourier transform Raman (FT-Raman) spectroscopy from drilled cylindrical-conical holes within pharmaceutical tablet cores. Multiple scattering of the incident laser light within the holes results in an increased Raman signal due to the larger Raman sampling volume. This is important for overcoming typical sub-sampling issues encountered when employing FT-Raman backscattering of heterogeneous pharmaceutical tablets.

View Article and Find Full Text PDF

Transmission Fourier transform (FT) Raman spectroscopy of pharmaceutical tablet cores is demonstrated using traditional, unmodified commercial instrumentation. The benefits of improved precision over backscattering Raman spectroscopy due to increased sample volume are demonstrated. Self-absorption effects on analyte band ratios and sample probe volume are apparent, however.

View Article and Find Full Text PDF