Publications by authors named "Matthew S Weaver"

The myeloid cells infiltrating the heart early after acute myocardial infarction elaborate a secretome that largely orchestrates subsequent ventricular wall repair. Regulating this innate immune response could be a means to improve infarct healing. To pilot this concept, we utilized (β1,3-d-) glucan-encapsulated small interfering RNA (siRNA)-containing particles (GeRPs), targeting mononuclear phagocytes, delivered to mice as a one-time intramyocardial injection immediately after acute infarction.

View Article and Find Full Text PDF

Objective: Generating myocyte grafts that bridge across infarcts could maximize their functional impact and best utilize small numbers of stem cells. To date, however, graft survival within acute infarcts has not been feasible. To enhance intrainfarct graft viability, human embryonic stem cell-derived cardiomyocytes (hESC-CMs) were pretreated before implantation with cobalt protoporphyrin (CoPP), a pharmacologic inducer of cytoprotective heme oxygenase-1.

View Article and Find Full Text PDF

Human embryonic stem cell-derived cardiomyocytes (hESC-CMs) can regenerate infarcted myocardium. However, when implanted into acutely infarcted hearts, few cells survive the first week postimplant. To improve early graft survival, hESC-CMs were pretreated with cobalt protoporphyrin (CoPP), a transcriptional activator of cytoprotective heme oxygenase-1 (HO-1).

View Article and Find Full Text PDF

Background: The progressive shift from a young to an aged heart is characterized by alterations in the cardiac matrix. The present study investigated whether the matricellular protein thrombospondin-2 (TSP-2) may affect cardiac dimensions and function with physiological aging of the heart.

Methods And Results: TSP-2 knockout (KO) and wild-type mice were followed up to an age of 60 weeks.

View Article and Find Full Text PDF