Publications by authors named "Matthew S Thorum"

An in situ electrochemical X-ray absorption spectroscopy (XAS) cell has been fabricated that enables high oxygen flux to the working electrode by utilizing a thin poly(dimethylsiloxane) (PDMS) window. This cell design enables in situ XAS investigations of the oxygen reduction reaction (ORR) at high operating current densities greater than 1 mA in an oxygen-purged environment. When the cell was used to study the ORR for a Pt on carbon electrocatalyst, the data revealed a progressive evolution of the electronic structure of the metal clusters that is both potential-dependent and strongly current-dependent.

View Article and Find Full Text PDF

Laccase, a multicopper oxidase, catalyses the four electron reduction of oxygen to water. Upon adsorption to an electrode surface, laccase is known to reduce oxygen at overpotentials lower than the best noble metal electrocatalysts usually employed. While the electrocatalytic activity of laccase is well established on carbon electrodes, laccase does not typically adsorb to better defined noble metal surfaces in an orientation that allows for efficient electrocatalysis.

View Article and Find Full Text PDF

The performance of a novel carbon-supported copper complex of 3,5-diamino-1,2,4-triazole (Cu-tri/C) is investigated as a cathode material using an alkaline microfluidic H(2)/O(2) fuel cell. The absolute Cu-tri/C cathode performance is comparable to that of a Pt/C cathode. Furthermore, at a commercially relevant potential, the measured mass activity of an unoptimized Cu-tri/C-based cathode was significantly greater than that of similar Pt/C- and Ag/C-based cathodes.

View Article and Find Full Text PDF

A review of the oxygen reduction reaction (ORR) and its use in fuel-cell applications is presented. Discussed are mechanisms of the ORR and implementations of catalysts for this reaction. Specific catalysts discussed include nanoparticles, macrocycles and pyrolysis products, carbons, chalcogenides, enzymes, and coordination complexes.

View Article and Find Full Text PDF

A new family of molecule-based magnets of general formula V[TCNQR(2)](2).zCH(2)Cl(2) has been synthesized and characterized (TCNQ = 7,7,8,8-tetracyano-p-quinodimethane; R = H, Br, Me, Et, i-Pr, OMe, OEt, and OPh). In addition, solid solutions of V[TCNQ](x)()[TCNQ(OEt)(2)](2)(-)(x)().

View Article and Find Full Text PDF