Although nephrite jade has been collected and treasured since the Stone Age, we lack a clear understanding of how it forms during deformation and metasomatism in shear zones. Using microstructural analysis of samples from Taiwan, California, and New Zealand, we propose a conceptual model for the evolution of nephrite jade that distinguishes four nephrite types based on mode of formation and textural characteristics: (1) primary (type 1a) or folded (type 1b) vein nephrite, (2) crenulated nephrite (type 2), (3) foliated semi-nephrite (type 3), and (4) nodular or domainal nephrite (type 4). We interpret the texture of our analysed samples to represent snapshots of a progressive textural evolution similar to that experienced by other deformed and fine-grained metamorphic rocks that develop under fluid-present, greenschist-facies conditions.
View Article and Find Full Text PDFLaboratory experiments on serpentinite suggest that extreme dynamic weakening at earthquake slip rates is accompanied by amorphisation, dehydration and possible melting. However, hypotheses arising from experiments remain untested in nature, because earthquake ruptures have not previously been recognised in serpentinite shear zones. Here we document the progressive formation of high-temperature reaction products that formed by coseismic amorphisation and dehydration in a plate boundary-scale serpentinite shear zone.
View Article and Find Full Text PDF