Publications by authors named "Matthew S Devore"

Single-molecule fluorescence resonance energy transfer (smFRET) remains a widely utilized and powerful tool for quantifying heterogeneous interactions and conformational dynamics of biomolecules. However, traditional smFRET experiments either are limited to short observation times (typically less than 1 ms) in the case of "burst" confocal measurements or require surface immobilization which usually has a temporal resolution limited by the camera framing rate. We developed a smFRET 3D tracking microscope that is capable of observing single particles for extended periods of time with high temporal resolution.

View Article and Find Full Text PDF

We investigate the roles of measurement time scale and the nature of the fluorophores in the FRET states measured for calmodulin, a calcium signaling protein known to undergo pronounced conformational changes. The measured FRET distributions depend markedly on the measurement time scale (nanosecond or microsecond). Comparison of FRET distributions measured by donor fluorescence decay with FRET distributions recovered from single-molecule burst measurements binned over time scales of 90 μs to 1 ms reveals conformational averaging over the intervening time regimes.

View Article and Find Full Text PDF

Single particle tracking has provided a wealth of information about biophysical processes such as motor protein transport and diffusion in cell membranes. However, motion out of the plane of the microscope or blinking of the fluorescent probe used as a label generally limits observation times to several seconds. Here, we overcome these limitations by using novel non-blinking quantum dots as probes and employing a custom 3D tracking microscope to actively follow motion in three dimensions (3D) in live cells.

View Article and Find Full Text PDF

While semiconductor quantum dots (QDs) have been used successfully in numerous single particle tracking (SPT) studies due to their high photoluminescence efficiency, photostability, and broad palette of emission colors, conventional QDs exhibit fluorescence intermittency or 'blinking,' which causes ambiguity in particle trajectory analysis and limits tracking duration. Here, non-blinking 'giant' quantum dots (gQDs) are exploited to study IgE-FcRI receptor dynamics in live cells using a confocal-based 3D SPT microscope. There is a 7-fold increase in the probability of observing IgE-FcRI for longer than 1 min using the gQDs compared to commercially available QDs.

View Article and Find Full Text PDF

We analyze single molecule FRET burst measurements using Bayesian nested sampling. The MultiNest algorithm produces accurate FRET efficiency distributions from single-molecule data. FRET efficiency distributions recovered by MultiNest and classic maximum entropy are compared for simulated data and for calmodulin labeled at residues 44 and 117.

View Article and Find Full Text PDF

We describe a method for analysis of single-molecule Förster resonance energy transfer (FRET) burst measurements using classic maximum entropy. Classic maximum entropy determines the Bayesian inference for the joint probability describing the total fluorescence photons and the apparent FRET efficiency. The method was tested with simulated data and then with DNA labeled with fluorescent dyes.

View Article and Find Full Text PDF

Fluorescence correlation spectroscopy (FCS) is a robust method for the detection of intramolecular dynamics in proteins but is also susceptible to interference from other dynamic processes such as triplet kinetics and photobleaching. We describe an approach for the detection of intramolecular dynamics in proteins labeled with a FRET dye pair based on global fitting to the two autocorrelation functions (green-green and red-red) and the two cross-correlation functions (green-red and red-green). We applied the method to detect intramolecular dynamics in the Ca(2+) signaling protein calmodulin.

View Article and Find Full Text PDF