Olefin/paraffin separation is an important but challenging and energy-intensive process in petrochemical industry. The realization of carbons with size-exclusion capability is highly desirable but rarely reported. Herein, we report polydopamine-derived carbons (PDA-Cx, where x refers to the pyrolysis temperature) with tailorable sub-5 Å micropore orifices together with larger microvoids by one-step pyrolysis.
View Article and Find Full Text PDFEnergy-efficient capture and release of small gas molecules, particularly carbon dioxide (CO) and methane (CH), are of significant interest in academia and industry. Porous materials such as metal-organic frameworks (MOFs) have been extensively studied, as their ultrahigh porosities and tunability enable significant amounts of gas to be adsorbed while also allowing specific applications to be targeted. However, because of the microporous nature of MOFs, the gas adsorption performance is dominated by high uptake capacity at low pressures, limiting their application.
View Article and Find Full Text PDFThe effect of metal-cluster redox identity on the thermal decarboxylation of a series of isostructural metal-organic frameworks (MOFs) with tetracarboxylate-based ligands and trinuclear μ-oxo clusters was investigated. The PCN-250 series of MOFs can consist of various metal combinations (Fe, Fe/Ni, Fe/Mn, Fe/Co, Fe/Zn, Al, In, and Sc). The Fe-based system can undergo a thermally induced reductive decarboxylation, producing a mixed valence cluster with decarboxylated ligand fragments subsequently eliminated to form uniform mesopores.
View Article and Find Full Text PDFPorous materials play a significant role in modern chemistry and materials science; despite recent scientific interest, they have a history dating back to antiquity. Here the authors provide a brief overview of the past that has contributed to their evolution.
View Article and Find Full Text PDFA recent screening study highlighted a molecular compound, apilimod, for its efficacy against the SARS-CoV-2 virus, while another compound, tetrandrine, demonstrated a remarkable synergy with the benchmark antiviral drug, remdesivir. Here, we find that because of significantly reduced potential energy barriers, which also give rise to pronounced quantum effects, the rotational dynamics of the most dynamically active methyl groups in apilimod and tetrandrine are much faster than those in remdesivir. Because dynamics of methyl groups are essential for biochemical activity, screening studies based on the computed potential energy profiles may help identify promising candidates within a given class of drugs.
View Article and Find Full Text PDFRoom-temperature ionic liquids are promising candidates for applications ranging from electrolytes for energy storage devices to lubricants for food and cellulose processing to compounds for pharmaceutics, biotransformation, and biopreservation. Due to the ion complexity, many room-temperature ionic liquids readily form amorphous phases upon cooling, even at modest rates. Here, we investigate two commonly studied imidazolium-based room-temperature ionic liquids, 1-ethyl-3-methylimidazolium tetrafluoroborate and 1-ethyl-3-methylimidazolium bis(trifluoromethylsulfonyl)imide, as well as their mixtures, to demonstrate how the complex interplay between the crystalline and amorphous phases is affected by the processing conditions, such as thermal history, liquid mixing, and applied pressure.
View Article and Find Full Text PDFThe thermally activated dynamics of methyl groups are important for biochemical activity as they allow for a more efficient sampling of the energy landscape. Here, we compare methyl rotations in the dry and variously hydrated states of three primary drugs under consideration to treat the recent coronavirus disease (COVID-19), namely, hydroxychloroquine and its sulfate, dexamethasone and its sodium diphosphate, and remdesivir. We find that the main driving force behind the considerable reduction in the activation energy for methyl rotations in the hydrated state is the hydration-induced disorder in the methyl group local environments.
View Article and Find Full Text PDFTwo-dimensional covalent organic frameworks (2D COFs) are synthetically diverse, layered macromolecules. Their covalent lattices are thought to confer high thermal stability, which is typically evaluated with thermogravimetric analysis (TGA). However, TGA measures the temperature at which volatile degradation products are formed and is insensitive to changes of the periodic structure of the COF.
View Article and Find Full Text PDFMetal-organic frameworks (MOFs), constructed from organic linkers and inorganic building blocks, are well-known for their high crystallinity, high surface areas, and high component tunability. The stability of MOFs is a key prerequisite for their potential practical applications in areas including storage, separation, catalysis, and biomedicine since it is essential to guarantee the framework integrity during utilization. However, MOFs are prone to destruction under external stimuli, considerably hampering their commercialization.
View Article and Find Full Text PDF2D covalent organic frameworks (2D COFs) are a unique materials platform that combines covalent connectivity, structural regularity, and molecularly precise porosity. However, 2D COFs typically form insoluble aggregates, thus limiting their processing via additive manufacturing techniques. In this work, colloidal suspensions of boronate-ester-linked 2D COFs are used as a spray-coating ink to produce large-area 2D COF thin films.
View Article and Find Full Text PDFLiquid biopsy, particularly the analysis of circulating tumor DNA (ctDNA), has demonstrated considerable promise for numerous clinical intended uses. Successful validation and commercialization of novel ctDNA tests have the potential to improve the outcomes of patients with cancer. The goal of the Blood Profiling Atlas Consortium (BloodPAC) is to accelerate the development and validation of liquid biopsy assays that will be introduced into the clinic.
View Article and Find Full Text PDFChloroquine and its derivative hydroxychloroquine are primarily known as antimalaria drugs. Here, we investigate the influence of hydration water on the molecular dynamics in hydroxychloroquine sulfate, a commonly used solubilized drug form. When hydration, even at a low level, results in a disordered structure, as opposed to the highly ordered structure of dry hydroxychloroquine sulfate, the activation barriers for the rotation of methyl groups in the drug molecules become randomized and, on average, significantly reduced.
View Article and Find Full Text PDFThermal decomposition of an iron-based MOF was conducted under controlled gas environments to understand the resulting porous carbon structure. Different phases and crystallite sizes of iron oxide are produced based on the specific gas species. In particular, air resulted in iron(iii) oxide, and DO and CO resulted in the mixed valent iron(ii,iii) oxide.
View Article and Find Full Text PDFThe efficient preparation of single-crystalline ionic polymers and fundamental understanding of their structure-property relationships at the molecular level remains a challenge in chemistry and materials science. Here, we describe the single-crystal structure of a highly ordered polycationic polymer (polyelectrolyte) and its proton conductivity. The polyelectrolyte single crystals can be prepared on a gram-scale in quantitative yield, by taking advantage of an ultraviolet/sunlight-induced topochemical polymerization, from a tricationic monomer-a self-complementary building block possessing a preorganized conformation.
View Article and Find Full Text PDF