Publications by authors named "Matthew Rielly"

Background: In June of 2010, an antenatal ultrasound program to perform basic screening for high-risk pregnancies was introduced at a community health care center in rural Uganda. Whether the addition of ultrasound scanning to antenatal visits at the health center would encourage or discourage potential patients was unknown. Our study sought to evaluate trends in the numbers of antenatal visits and deliveries at the clinic, pre- and post-introduction of antenatal ultrasound to determine what effect the presence of ultrasound at the clinic had on these metrics.

View Article and Find Full Text PDF

The concept of an effective apodization was introduced to describe the field pattern for the nonlinearly generated second harmonic (2f) within the focal zone using a linear propagation model. Our objective in this study was to investigate the validity of the concept of an effective apodization at 2f as an approach to approximating the field of the second harmonic over a wide range of depths. Two experimental setups were employed: a vascular imaging array with a water path and an adult cardiac imaging array with an attenuating liver path.

View Article and Find Full Text PDF

To be successful, correlation-based, phase-aberration correction requires a high correlation among backscattered signals. For harmonic imaging, the spatial coherence of backscatter for the second harmonic component is different than the spatial coherence of backscatter for the fundamental component. The purpose of this work was to determine the effect of changing the transmit apodization on the spatial coherence of backscatter for the nonlinearly generated second harmonic.

View Article and Find Full Text PDF

Correlation-based approaches to phase aberration correction rely on the spatial coherence of backscattered signals. The spatial coherence of backscatter from speckle-producing targets is predicted by the auto correlation of the transmit apodization (Van Cittert-Zernike theorem). Work by others indicates that the second harmonic beam has a wider mainlobe with lower sidelobes than a beam transmitted at 2f.

View Article and Find Full Text PDF