Publications by authors named "Matthew Regner"

Triple-negative breast cancer (TNBC) is the most therapeutically recalcitrant form of breast cancer, which is due in part to the paucity of targeted therapies. A systematic analysis of regulatory elements that extend beyond protein-coding genes could uncover avenues for therapeutic intervention. To this end, we analyzed the regulatory mechanisms of TNBC-specific transcriptional enhancers together with their noncoding enhancer RNA (eRNA) transcripts.

View Article and Find Full Text PDF

Annotation of the -regulatory elements that drive transcriptional dysregulation in cancer cells is critical to improving our understanding of tumor biology. Herein, we present a compendium of matched chromatin accessibility (scATAC-seq) and transcriptome (scRNA-seq) profiles at single-cell resolution from human breast tumors and healthy mammary tissues processed immediately following surgical resection. We identify the most likely cell-of-origin for luminal breast tumors and basal breast tumors and then introduce a novel methodology that implements linear mixed-effects models to systematically quantify associations between regions of chromatin accessibility (i.

View Article and Find Full Text PDF

Male breast cancer represents about 1% of all breast cancer diagnoses and, although there are some similarities between male and female breast cancer, the paucity of data available on male breast cancer makes it difficult to establish targeted therapies. To date, most male breast cancers (MBCs) are treated according to protocols established for female breast cancer (FBC). Thus, defining the transcriptional and epigenetic landscape of MBC with improved resolution is critical for developing better avenues for therapeutic intervention.

View Article and Find Full Text PDF

The human genome contains regulatory elements, such as enhancers, that are often rewired by cancer cells for the activation of genes that promote tumorigenesis and resistance to therapy. This is especially true for cancers that have little or no known driver mutations within protein coding genes, such as ovarian cancer. Herein, we utilize an integrated set of genomic and epigenomic datasets to identify clinically relevant super-enhancers that are preferentially amplified in ovarian cancer patients.

View Article and Find Full Text PDF

Enhancers are critical regulatory elements in the genome that help orchestrate spatiotemporal patterns of gene expression during development and normal physiology. In cancer, enhancers are often rewired by various genetic and epigenetic mechanisms for the activation of oncogenes that lead to initiation and progression. A key feature of active enhancers is the production of non-coding RNA molecules called enhancer RNAs, whose functions remain unknown but can be used to specify active enhancers de novo.

View Article and Find Full Text PDF

Deconvolution of regulatory mechanisms that drive transcriptional programs in cancer cells is key to understanding tumor biology. Herein, we present matched transcriptome (scRNA-seq) and chromatin accessibility (scATAC-seq) profiles at single-cell resolution from human ovarian and endometrial tumors processed immediately following surgical resection. This dataset reveals the complex cellular heterogeneity of these tumors and enabled us to quantitatively link variation in chromatin accessibility to gene expression.

View Article and Find Full Text PDF

Lignins are cell wall-located aromatic polymers that provide strength and hydrophobicity to woody tissues. Lignin monomers are synthesized via the phenylpropanoid pathway, wherein CAFFEOYL SHIKIMATE ESTERASE (CSE) converts caffeoyl shikimate into caffeic acid. Here, we explored the role of the two CSE homologs in poplar (Populus tremula × P.

View Article and Find Full Text PDF

Zymomonas mobilis is an industrially relevant bacterium notable for its ability to rapidly ferment simple sugars to ethanol using the Entner-Doudoroff (ED) glycolytic pathway, an alternative to the well-known Embden-Meyerhof-Parnas (EMP) pathway used by most organisms. Recent computational studies have predicted that the ED pathway is substantially more thermodynamically favorable than the EMP pathway, a potential factor explaining the high glycolytic rate in Z. mobilis.

View Article and Find Full Text PDF

In this paper, we present a comprehensive computational study on the hydrogen sulfide ion (HS) sensing mechanism in aqueous solution using pyrylium-thiopyrylium transformation. Explicit water molecules up to three water molecules are considered using supramolecular models. The effect of water bulk solvent is also taken into account according to the polarizable continuum model.

View Article and Find Full Text PDF

Zymomonas mobilis is an aerotolerant anaerobe and prolific ethanologen with attractive characteristics for industrial bioproduct generation. However, there is currently insufficient knowledge of the impact that environmental factors have on flux through industrially relevant biosynthetic pathways. Here, we examined the effect of oxygen exposure on metabolism and gene expression in Z.

View Article and Find Full Text PDF

This study introduces a novel class of imidazolium- and ammonium-based ionic liquids possessing two C and C tails and thioether linkers designed for lipoplex-mediated DNA delivery. Imidazolium-based ionic liquids displayed efficient gene delivery properties with low toxicity. Thiol-yne click chemistry was employed for the facile and robust synthesis of these thioether-based cationic lipioids with enhanced lipophilicity and low fluidity.

View Article and Find Full Text PDF

The recalcitrance of woody biomass, particularly its lignin component, hinders its sustainable transformation to fuels and biomaterials. Although the recent discovery of several bacterial ligninases promises the development of novel biocatalysts, these enzymes have largely been characterized using model substrates: direct evidence for their action on biomass is lacking. Herein, we report the delignification of woody biomass by a small laccase (sLac) from Amycolatopsis sp.

View Article and Find Full Text PDF

Tricin was recently discovered in lignin preparations from wheat (Triticum aestivum) straw and subsequently in all monocot samples examined. To provide proof that tricin is involved in lignification and establish the mechanism by which it incorporates into the lignin polymer, the 4'-O-β-coupling products of tricin with the monolignols (p-coumaryl, coniferyl, and sinapyl alcohols) were synthesized along with the trimer that would result from its 4'-O-β-coupling with sinapyl alcohol and then coniferyl alcohol. Tricin was also found to cross couple with monolignols to form tricin-(4'-O-β)-linked dimers in biomimetic oxidations using peroxidase/hydrogen peroxide or silver (I) oxide.

View Article and Find Full Text PDF