Publications by authors named "Matthew R Nussio"

1. This study compared the extent, affinity, and kinetics of drug binding to human serum albumin (HSA) and liver fatty acid binding protein (LFABP) using ultrafiltration and surface plasmon resonance (SPR). 2.

View Article and Find Full Text PDF

The well-characterized small heat-shock protein, alphaB-crystallin, acts as a molecular chaperone by interacting with unfolding proteins to prevent their aggregation and precipitation. Structural perturbation (e.g.

View Article and Find Full Text PDF

The effect of cholesterol (CHOL) on the material properties of supported lipid bilayers composed of lipid mixtures that mimic the composition of lipid microdomains was studied by force-volume (FV) imaging under near-physiological conditions. These studies were carried out with lipid mixtures of dioleoylphosphatidylcholine, dioleoylphosphatidylserine, and sphingomyelin. FV imaging enabled simultaneous topology and force measurements of sphingomyelin-rich domains (higher domain (HD)) and phospholipid-rich domains (lower domain (LD)), which allowed quantitative measurement of the force needed to puncture the lipid bilayer with or without CHOL.

View Article and Find Full Text PDF

Cytochromes P450 (CYP) are key enzymes involved in the metabolism of drugs and other lipophilic xenobiotics and endogenous compounds. In this study, atomic force microscopy was applied to characterise the association of CYP2C9 to dimyristoylphosphatidylcholine (DMPC) supported phospholipid bilayers. CYP2C9 was found to exclusively localise in the gel domains of partially melted DMPC bilayers.

View Article and Find Full Text PDF

In this study, we compare for the first time the nanomechanical properties of lipid bilayer islands on flat and porous surfaces. 1,2-dimyristoyl-sn-glycero-3-phosphatidylcholine (DMPC) and 1,2-dipalmitoyl-sn-glycero-3-phosphatidylcholine (DPPC) bilayers were deposited on flat (silicon and mica) and porous silicon (pSi) substrate surfaces and examined using atomic force spectroscopy and force volume imaging. Force spectroscopy measurements revealed the effects of the underlying substrate and of the lipid phase on the nanomechanical properties of bilayers islands.

View Article and Find Full Text PDF

Drug-membrane interactions assume considerable importance in pharmacokinetics and drug metabolism. Here, we present the interaction of chlorpromazine hydrochloride (CPZ) with supported phospholipid bilayers. It was demonstrated that CPZ binds rapidly to phospholipid bilayers, disturbing the molecular ordering of the phospholipids.

View Article and Find Full Text PDF

The phase behavior and lateral organization of saturated phosphatidylethanolamine (PE) and phosphatidylcholine (PC) bilayers were investigated using atomic force microscopy (AFM) and force-volume (FV) imaging for both pure and two component mixed layers. The results demonstrated the existence of unexpected segregated domains in pure PE membranes at temperatures well below the transition temperature (T(m)) of the component phospholipid. These domains were of low mechanical stability and lacked the capacity for hydrogen bonding between lipid headgroups.

View Article and Find Full Text PDF

Expanded cross-linked copolymers of poly(N-isopropylacrylamide) (PNiPAAm) and poly(acrylic acid) (PAAc) of varying monomer ratios were grafted from a crystalline silicon surface. Surface-tethered polymerization was performed at a slightly basic pH, where electrostatic repulsion among acrylic acid monomer units forces the network into an expanded polymer conformation. The influence of this expanded conformation on switchability between a hydrophilic and a hydrophobic state was investigated.

View Article and Find Full Text PDF

The interactions of three cationic amphiphilic drugs (CPZ, AMI, PROP) with phospholipid vesicles comprising DOPC, DMPC, or DSPC were investigated using surface plasmon resonance (SPR). Responses for CAD concentrations in the range 15.625 to 1500 microM were measured.

View Article and Find Full Text PDF