Purpose: The process of invasion and metastasis formation of tumor cells can be studied by following the migration of labeled cells over prolonged time periods. This report investigates the applicability of iron oxide nanoparticles as a magnetic resonance imaging (MRI) contrast agent for cell labeling.
Methods: γFe2 O3 nanoparticles prepared with direct flame spray pyrolysis are biofunctionalized with poly-l-lysine (PLL).
Iron oxide magnetic nanoparticles are good candidates for magnetic resonance imaging (MRI) contrast agents due to their high magnetic susceptibilities. Here we investigate 19 polyether-coated magnetite nanoparticle systems comprising three series. All systems were synthesized from the same batch of magnetite nanoparticles.
View Article and Find Full Text PDFJ Colloid Interface Sci
April 2010
Novel hydrophilic triblock copolymers which form micelles in aqueous solution were studied by static and dynamic light scattering (SLS and DLS), small angle neutron scattering (SANS) and densitometry. The polymers were symmetric A-B-A block copolymers having two poly(ethylene oxide) (PEO) tail blocks and a polyurethane (PU) center segment that contained pendant carboxylic acids. The aggregation number of the micelles decreased with increasing PEO mass content.
View Article and Find Full Text PDFAnalytical models of proton transverse relaxation rate enhancement by magnetic nanoparticles were tested by making measurements on model experimental systems in a field of 1.4 T. Proton relaxivities were measured for five aqueous suspensions of iron oxide (maghemite) nanoparticles with nominal mean particle sizes of 6, 8, 10, 11, and 13 nm.
View Article and Find Full Text PDFThe colloidal stability of dispersions comprised of magnetite nanoparticles coated with polydimethylsiloxane (PDMS) oligomers was investigated theoretically and experimentally. Particle-particle interaction potentials in a theta solvent and in a good solvent for the PDMS were predicted by calculating van der Waals, electrostatic, steric, and magnetic forces as functions of interparticle separation distances. A variety of nanoparticle sizes and size distributions were considered.
View Article and Find Full Text PDF