Publications by authors named "Matthew R Hermes"

We introduce a hybrid quantum-classical algorithm, the localized active space unitary selective coupled cluster singles and doubles (LAS-USCCSD) method. Derived from the localized active space unitary coupled cluster (LAS-UCCSD) method, LAS-USCCSD first performs a classical LASSCF calculation, then selectively identifies the most important parameters (cluster amplitudes used to build the multireference UCC ansatz) for restoring interfragment interaction energy using this reduced set of parameters with the variational quantum eigensolver method. We benchmark LAS-USCCSD against LAS-UCCSD by calculating the total energies of (H), (H), and -butadiene, and the magnetic coupling constant for a bimetallic compound [Cr(OH)(NH)].

View Article and Find Full Text PDF

Modeling chemical reactions with quantum chemical methods is challenging when the electronic structure varies significantly throughout the reaction and when electronic excited states are involved. Multireference methods, such as complete active space self-consistent field (CASSCF), can handle these multiconfigurational situations. However, even if the size of the needed active space is affordable, in many cases, the active space does not change consistently from reactant to product, causing discontinuities in the potential energy surface.

View Article and Find Full Text PDF

We investigated the use of density matrix embedding theory to facilitate the computation of core ionization energies (IPs) of large molecules at the equation-of-motion coupled-cluster singles doubles with perturbative triples (EOM-CCSD*) level in combination with the core-valence separation (CVS) approximation. The unembedded IP-CVS-EOM-CCSD* method with a triple-ζ basis set produced ionization energies within 1 eV of experiment with a standard deviation of ∼0.2 eV for the core65 data set.

View Article and Find Full Text PDF

The localized active space self-consistent field method factorizes a complete active space wave function into an antisymmetrized product of localized active space wave function fragments. Correlation between fragments is then reintroduced through localized active space state interaction (LASSI), in which the Hamiltonian is diagonalized in a model space of LAS states. However, the optimal procedure for defining the LAS fragments and LASSI model space is unknown.

View Article and Find Full Text PDF

Accurately modeling photochemical reactions is difficult due to the presence of conical intersections and locally avoided crossings, as well as the inherently multiconfigurational character of excited states. As such, one needs a multistate method that incorporates state interaction in order to accurately model the potential energy surface at all nuclear coordinates. The recently developed linearized pair-density functional theory (L-PDFT) is a multistate extension of multiconfiguration PDFT, and it has been shown to be a cost-effective post-MCSCF method (as compared to more traditional and expensive multireference many-body perturbation methods or multireference configuration interaction methods) that can accurately model potential energy surfaces in regions of strong nuclear-electronic coupling in addition to accurately predicting Franck-Condon vertical excitations.

View Article and Find Full Text PDF

State preparation for quantum algorithms is crucial for achieving high accuracy in quantum chemistry and competing with classical algorithms. The localized active space-unitary coupled cluster (LAS-UCC) algorithm iteratively loads a fragment-based multireference wave function onto a quantum computer. In this study, we compare two state preparation methods, quantum phase estimation (QPE) and direct initialization (DI), for each fragment.

View Article and Find Full Text PDF

Compressed multistate pair-density functional theory (CMS-PDFT) is a multistate version of multiconfiguration pair-density functional theory that can capture the correct topology of coupled potential energy surfaces (PESs) around conical intersections. In this work, we develop interstate coupling vectors (ISCs) for CMS-PDFT in the and electronic structure packages. Yet, the main focus of this work is using ISCs to calculate minimum-energy conical intersections (MECIs) by CMS-PDFT.

View Article and Find Full Text PDF

Two possible explanations for the temperature dependence of spin-crossover (SCO) behavior in the dimeric triple-decker Cr(II) complex ([(η-CMe)Cr(μ:η-P)Cr(η-CMe)]) have been offered. One invokes variations in antiferromagnetic interactions between the two Cr(II) ions, whereas the other posits the development of a strong ligand-field effect favoring the low-spin ground state. We perform multireference electronic structure calculations based on the multiconfiguration pair-density functional theory to resolve these effects.

View Article and Find Full Text PDF
Article Synopsis
  • * The rise of exascale computing technology presents challenges that necessitate a strategic approach to optimize the use of future computational resources.
  • * Emphasizing software sustainability and interoperability is crucial for leveraging exascale capabilities and facilitating innovative solutions for upcoming scientific challenges.
View Article and Find Full Text PDF

The optical spectra of neutral oxygen vacancies (F centers) in the bulk MgO lattice are investigated using density matrix embedding theory. The impurity Hamiltonian is solved with the complete active space self-consistent field and second-order -electron valence state perturbation theory (NEVPT2-DMET) multireference methods. To estimate defect-localized vertical excitation energies at the nonembedding and thermodynamic limits, a double extrapolation scheme is employed.

View Article and Find Full Text PDF

We present a quantum embedding method for ground and excited states of extended systems that uses multiconfiguration pair-density functional theory (MC-PDFT) with densities provided by periodic density matrix embedding theory (pDMET). We compute local excitations in oxygen mono- and divacancies on a magnesium oxide (100) surface and find absolute deviations within 0.05 eV between pDMET using the MC-PDFT, denoted as pDME-PDFT, and the more expensive, nonembedded MC-PDFT approach.

View Article and Find Full Text PDF

The developments of the open-source OpenMolcas chemistry software environment since spring 2020 are described, with a focus on novel functionalities accessible in the stable branch of the package or via interfaces with other packages. These developments span a wide range of topics in computational chemistry and are presented in thematic sections: electronic structure theory, electronic spectroscopy simulations, analytic gradients and molecular structure optimizations, ab initio molecular dynamics, and other new features. This report offers an overview of the chemical phenomena and processes OpenMolcas can address, while showing that OpenMolcas is an attractive platform for state-of-the-art atomistic computer simulations.

View Article and Find Full Text PDF

Multiconfiguration pair-density functional theory (MC-PDFT) is a post-SCF multireference method that has been successful at computing ground- and excited-state energies. However, MC-PDFT is a single-state method in which the final MC-PDFT energies do not come from diagonalization of a model-space Hamiltonian matrix, and this can lead to inaccurate topologies of potential energy surfaces near locally avoided crossings and conical intersections. Therefore, in order to perform physically correct molecular dynamics with electronically excited states or to treat Jahn-Teller instabilities, it is necessary to develop a PDFT method that recovers the correct topology throughout the entire nuclear configuration space.

View Article and Find Full Text PDF

We investigate the negatively charged nitrogen-vacancy center in diamond using periodic density matrix embedding theory (pDMET). To describe the strongly correlated excited states of this system, the complete active space self-consistent field (CASSCF) followed by n-electron valence state second-order perturbation theory (NEVPT2) was used as the impurity solver. Since the NEVPT2-DMET energies show a linear dependence on the inverse of the size of the embedding subspace, we performed an extrapolation of the excitation energies to the nonembedding limit using a linear regression.

View Article and Find Full Text PDF

Quantum chemistry calculations of large, strongly correlated systems are typically limited by the computation cost that scales exponentially with the size of the system. Quantum algorithms, designed specifically for quantum computers, can alleviate this, but the resources required are still too large for today's quantum devices. Here, we present a quantum algorithm that combines a localization of multireference wave functions of chemical systems with quantum phase estimation (QPE) and variational unitary coupled cluster singles and doubles (UCCSD) to compute their ground-state energy.

View Article and Find Full Text PDF

Multireference electronic structure methods, like the complete active space (CAS) self-consistent field model, have long been used to characterize chemically interesting processes. Important work has been done in recent years to develop modifications having a lower computational cost than CAS, but typically these methods offer no more chemical insight than that from the CAS solution being approximated. In this paper, we present the localized active space-state interaction (LASSI) method that can be used not only to lower the intrinsic cost of the multireference calculation but also to improve interpretability.

View Article and Find Full Text PDF

We have calculated state-averaged complete-active-space self-consistent-field (SA-CASSCF), multiconfiguration pair-density functional theory (MC-PDFT), hybrid MC-PDFT (HMC-PDFT), and -electron valence state second-order perturbation theory (NEVPT2) excitation energies with the approximate pair coefficient (APC) automated active-space selection scheme for the QUESTDB benchmark database of 542 vertical excitation energies. We eliminated poor active spaces (20-40% of calculations) by applying a threshold to the SA-CASSCF absolute error. With the remaining calculations, we find that NEVPT2 performance is significantly impacted by the size of the basis set the wave functions are converged in, regardless of the quality of their description, which is a problem absent in MC-PDFT.

View Article and Find Full Text PDF

The adsorption of simple gas molecules to metal oxide surfaces is a primary step in many heterogeneous catalysis applications. Quantum chemical modeling of these reactions is a challenge in terms of both cost and accuracy, and quantum-embedding methods are promising, especially for localized chemical phenomena. In this work, we employ density matrix embedding theory (DMET) for periodic systems to calculate the adsorption energy of CO to the MgO(001) surface.

View Article and Find Full Text PDF

Strong electron correlation plays an important role in transition-metal and heavy-metal chemistry, magnetic molecules, bond breaking, biradicals, excited states, and many functional materials, but it provides a significant challenge for modern electronic structure theory. The treatment of strongly correlated systems usually requires a multireference method to adequately describe spin densities and near-degeneracy correlation. However, quantitative computation of dynamic correlation with multireference wave functions is often difficult or impractical.

View Article and Find Full Text PDF

Accurate and affordable methods to characterize the electronic structure of solids are important for targeted materials design. Embedding-based methods provide an appealing balance in the trade-off between cost and accuracy─particularly when studying localized phenomena. Here, we use the density matrix embedding theory (DMET) algorithm to study the electronic excitations in solid-state defects with a restricted open-shell Hartree-Fock (ROHF) bath and multireference impurity solvers, specifically, complete active space self-consistent field (CASSCF) and -electron valence state second-order perturbation theory (NEVPT2).

View Article and Find Full Text PDF

Accurate quantum chemical methods for the prediction of spin-state energy gaps for strongly correlated systems are computationally expensive and scale poorly with the size of the system. This makes calculations for many experimentally interesting molecules impractical even with abundant computational resources. Previous work has shown that the localized active space (LAS) self-consistent field (SCF) method can be an efficient way to obtain multiconfiguration SCF wave functions of comparable quality to the corresponding complete active space (CAS) ones.

View Article and Find Full Text PDF

This paper presents a new theory called multiconfiguration density coherence functional theory (MC-DCFT). This theory provides a new route to define density functionals for multiconfiguration wave functions, in particular by using the one-particle density matrix in the coordinate representation. The theory is illustrated by calculating the dissociation curve of four heteronuclear and homonuclear diatomic molecules, namely, H, F, N, and HF, using density coherence functionals converted from PBE, BLYP, and PW91.

View Article and Find Full Text PDF

Density fitting reduces the computational cost of both energy and gradient calculations by avoiding the computation and manipulation of four-index electron repulsion integrals. With this algorithm, one can efficiently optimize the geometries of large systems with an accurate multireference treatment. Here, we present the derivation of multiconfiguration pair-density functional theory for energies and analytic gradients with density fitting.

View Article and Find Full Text PDF

We propose a hybrid multiconfiguration pair-density functional theory (HMC-PDFT) that is a weighted average of complete-active-space self-consistent-field (CASSCF) and multiconfiguration pair-density functional theory (MC-PDFT) energies with a semiempirical parameter to control the fraction of CASSCF energy. We also explore a more general two-parameter hybrid method with a scaled correlation energy that allows us to compare to the recently proposed λ-MC-PDFT method. We scan the parameter space for the scaled-correlation method using test sets consisting of electronic excitation energies and diatomic bond energies, and we find no significant improvement by introducing the scaling parameter.

View Article and Find Full Text PDF

PySCF is a Python-based general-purpose electronic structure platform that supports first-principles simulations of molecules and solids as well as accelerates the development of new methodology and complex computational workflows. This paper explains the design and philosophy behind PySCF that enables it to meet these twin objectives. With several case studies, we show how users can easily implement their own methods using PySCF as a development environment.

View Article and Find Full Text PDF

A PHP Error was encountered

Severity: Warning

Message: fopen(/var/lib/php/sessions/ci_session934qcrat1kkloqlt0otaotj9b75iktfq): Failed to open stream: No space left on device

Filename: drivers/Session_files_driver.php

Line Number: 177

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once

A PHP Error was encountered

Severity: Warning

Message: session_start(): Failed to read session data: user (path: /var/lib/php/sessions)

Filename: Session/Session.php

Line Number: 137

Backtrace:

File: /var/www/html/index.php
Line: 316
Function: require_once