Publications by authors named "Matthew R Fuller"

Many cold-water dependent aquatic organisms are experiencing habitat and population declines from increasing water temperatures. Identifying mechanisms which drive local and regional stream thermal regimes facilitates restoration at ecologically relevant scales. Stream temperatures vary spatially and temporally both within and among river basins.

View Article and Find Full Text PDF

Ecosystems in the Anthropocene face pressures from multiple, interacting forms of environmental change. These pressures, resulting from land use change, altered hydrologic regimes, and climate change, will likely change the synchrony of ecosystem processes as distinct components of ecosystems are impacted in different ways. However, discipline-specific definitions and methods for identifying synchrony and asynchrony have limited broader synthesis of this concept among studies and across disciplines.

View Article and Find Full Text PDF

River temperatures are expected to increase this century harming species requiring cold-water habitat unless restoration activities protect or improve habitat availability. Local shading by riparian vegetation can cool water temperatures, but uncertainty exists over the scaling of this local effect to larger spatial extents. We evaluate this issue using a regional spatial stream network temperature model with covariates representing shade effects to predict mean August stream temperatures across 78,195 km of tributaries flowing into the Columbia River in the northwestern US.

View Article and Find Full Text PDF

Under a warmer future climate, thermal refuges could facilitate the persistence of species relying on cold-water habitat. Often these refuges are small and easily missed or smoothed out by averaging in models. Thermal infrared (TIR) imagery can provide empirical water surface temperatures that capture these features at a high spatial resolution (<1 m) and over tens of kilometers.

View Article and Find Full Text PDF

Increases in river fragmentation globally threaten freshwater biodiversity. Rivers are fragmented by many agents, both natural and anthropogenic. We review the distribution and frequency of these major agents, along with their effects on connectivity and habitat quality.

View Article and Find Full Text PDF