Publications by authors named "Matthew R Freidel"

Since the beginning of the COVID-19 pandemic, extensive drug repurposing efforts have sought to identify small-molecule antivirals with various mechanisms of action. Here, we aim to review research progress on small-molecule viral entry and fusion inhibitors that directly bind to the SARS-CoV-2 Spike protein. Early in the pandemic, numerous small molecules were identified in drug repurposing screens and reported to be effective in in vitro SARS-CoV-2 viral entry or fusion inhibitors.

View Article and Find Full Text PDF

Clofazimine and Arbidol have both been reported to be effective in vitro SARS-CoV-2 fusion inhibitors. Both are promising drugs that have been repurposed for the treatment of COVID-19 and have been used in several previous and ongoing clinical trials. Small-molecule bindings to expressed constructs of the trimeric S2 segment of Spike and the full-length SARS-CoV-2 Spike protein were measured using a Surface Plasmon Resonance (SPR) binding assay.

View Article and Find Full Text PDF

Umifenovir (Arbidol) has been reported to exhibit some degree of efficacy in multiple clinical trials for the treatment of COVID-19 as a monotherapy. It has also demonstrated synergistic inhibition of SARS-CoV-2 with other direct-acting antivirals such as Remdesivir. A computational approach was used to identify the most favorable binding site to the SARS-CoV-2 Spike S2 segment and to perform virtual screening.

View Article and Find Full Text PDF

The 2019 emergence of, SARS-CoV-2 has tragically taken an immense toll on human life and far reaching impacts on society. There is a need to identify effective antivirals with diverse mechanisms of action in order to accelerate preclinical development. This study focused on five of the most established drug target proteins for direct acting small molecule antivirals: Nsp5 Main Protease, Nsp12 RNA-dependent RNA polymerase, Nsp13 Helicase, Nsp16 2'-O methyltransferase and the S2 subunit of the Spike protein.

View Article and Find Full Text PDF