Transient receptor potential (TRP) proteins form a superfamily Ca(2+)-permeable cation channels regulated by a range of chemical and physical stimuli. Structural analysis of a 'minimal' TRP vanilloid subtype 1 (TRPV1) elucidated a mechanism of channel activation by agonists through changes in its outer pore region. Though homologous to TRPV1, other TRPV channels (TRPV2-6) are insensitive to TRPV1 activators including heat and vanilloids.
View Article and Find Full Text PDFNeurite outgrowth is key to the formation of functional circuits during neuronal development. Neurotrophins, including nerve growth factor (NGF), increase neurite outgrowth in part by altering the function and expression of Ca(2+)-permeable cation channels. Here we report that transient receptor potential vanilloid 2 (TRPV2) is an intracellular Ca(2+)-permeable TRPV channel upregulated by NGF via the mitogen-activated protein kinase (MAPK) signaling pathway to augment neurite outgrowth.
View Article and Find Full Text PDFTemperature sensation is important for adaptation and survival of organisms. While temperature has the potential to affect all biological macromolecules, organisms have evolved specific thermosensitive molecular detectors that are able to transduce temperature changes into physiologically relevant signals. Among these thermosensors are ion channels from the transient receptor potential (TRP) family.
View Article and Find Full Text PDFAmphipathic polymers (amphipols), such as A8-35 and SApol, are a new tool for stabilizing integral membrane proteins in detergent-free conditions for structural and functional studies. Transient receptor potential (TRP) ion channels function as tetrameric protein complexes in a diverse range of cellular processes including sensory transduction. Mammalian TRP channels share ~20 % sequence similarity and are categorized into six subfamilies: TRPC (canonical), TRPV (vanilloid), TRPA (ankyrin), TRPM (melastatin), TRPP (polycystin), and TRPML (mucolipin).
View Article and Find Full Text PDFTransient receptor potential vanilloid 2 (TRPV2) is a Ca(2+)-permeable nonselective cation channel proposed to play a critical role in a wide array of cellular processes. Although TRPV2 surface expression was originally determined to be sensitive to growth factor signaling, regulated trafficking of TRPV2 has remained controversial. TRPV2 has proven difficult to study due to the lack of specific pharmacological tools to modulate channel activity; therefore, most studies of the cellular function of TRPV2 rely on immuno-detection techniques.
View Article and Find Full Text PDFTransient receptor potential (TRP) proteins are a large family of polymodal nonselective cation channels. The TRP vanilloid (TRPV) subfamily consists of six homologous members with diverse functions. TRPV1-TRPV4 are nonselective cation channels proposed to play a role in nociception, while TRPV5 and TRPV6 are involved in epithelial Ca²⁺ homeostasis.
View Article and Find Full Text PDFTransient receptor potential ankyrin 1 (TRPA1) is a non-selective ion channel, which is expressed in nociceptor sensory neurons and transduces chemical, inflammatory, and neuropathic pain signals. Numerous non-reactive compounds and electrophilic compounds, such as endogenous inflammatory mediators and exogenous pungent chemicals, can activate TRPA1. Here we report a 16-Å resolution structure of purified, functional, amphipol-stabilized TRPA1 analyzed by single-particle EM.
View Article and Find Full Text PDFBackground: Isoflurane enhances mechanical function in hearts subject to normothermic global or regional ischemia. The authors examined the effectiveness of isoflurane in preserving mechanical function in hearts subjected to cardioplegic arrest and prolonged hypothermic no-flow storage. The role of isoflurane in altering myocardial glucose metabolism during storage and reperfusion during these conditions and the contribution of adenosine triphosphate-sensitive potassium (K(atp)) channel activation in mediating the functional and metabolic effects of isoflurane preconditioning was determined.
View Article and Find Full Text PDF