Selenoprotein I (SELENOI) catalyzes the final reaction of the CDP-ethanolamine branch of the Kennedy pathway, generating the phospholipids phosphatidylethanolamine (PE) and plasmenyl-PE. Plasmenyl-PE is a key component of myelin and is characterized by a vinyl ether bond that preferentially reacts with oxidants, thus serves as a sacrificial antioxidant. In humans, multiple loss-of-function mutations in genes affecting plasmenyl-PE metabolism have been implicated in hereditary spastic paraplegia, including SELENOI.
View Article and Find Full Text PDFThe use of glucocorticoid medications is known to cause metabolic side effects such as overeating, excess weight gain, and insulin resistance. The hypothalamus, a central regulator of feeding behavior and energy expenditure, is highly responsive to glucocorticoids, and it has been proposed that it plays a role in glucocorticoid-induced metabolic defects. Glucocorticoids can alter the expression and activity of antioxidant enzymes and promote the accumulation of reactive oxygen species.
View Article and Find Full Text PDFArch Biochem Biophys
October 2022
Selenoprotein I (selenoi) is a unique selenocysteine (Sec)-containing protein widely expressed throughout the body. Selenoi belongs to two different protein families: the selenoproteins that are characterized by a redox reactive Sec residue and the lipid phosphotransferases that contain the highly conserved cytidine diphosphate (CDP)-alcohol phosphotransferase motif. Selenoi catalyzes the third reaction of the CDP-ethanolamine branch of the Kennedy pathway within the endoplasmic reticulum membrane.
View Article and Find Full Text PDFSelenoprotein I (SELENOI) is an ethanolamine phospholipid transferase contributing to cellular metabolism and the synthesis of glycosylphosphatidylinositol (GPI) anchors. SELENOI knockout (KO) in T cells has been shown to impair metabolic reprogramming during T cell activation and reduce GPI-anchored Thy-1 levels, which are both crucial for Th17 differentiation. This suggests SELENOI may be important for Th17 differentiation, and we found that SELENOI was indeed up-regulated early during the activation of naïve CD4 T cells in Th17 conditions.
View Article and Find Full Text PDFThe role of the essential trace element selenium in hypothalamic physiology has begun to come to light over recent years. Selenium is used to synthesize a family of proteins participating in redox reactions called selenoproteins, which contain a selenocysteine residue in place of a cysteine. Past studies have shown that disrupted selenoprotein expression in the hypothalamus can adversely impact energy homeostasis.
View Article and Find Full Text PDFA new mechanism of leptin extravasation from the bloodstream into the brain may have been discovered. According to recent findings by Butiaeva et al., pericytes within the blood-brain barrier (BBB) express the leptin receptor and, upon activation, facilitate the movement of the appetite-suppressing hormone into deeper regions of the hypothalamus.
View Article and Find Full Text PDFSelenium (Se) is an essential micronutrient of critical importance to mammalian life. Its biological effects are primarily mediated via co-translational incorporation into selenoproteins, as the unique amino acid, selenocysteine. These proteins play fundamental roles in redox signaling and includes the glutathione peroxidases and thioredoxin reductases.
View Article and Find Full Text PDFSkeletal muscle is responsible for the majority of glucose disposal following meals, and this is achieved by insulin-mediated trafficking of glucose transporter type 4 (GLUT4) to the cell membrane. The eight-protein exocyst trafficking complex facilitates targeted docking of membrane-bound vesicles, a process underlying the regulated delivery of fuel transporters. We previously demonstrated the role of exocyst subunit EXOC5 in insulin-stimulated GLUT4 exocytosis and glucose uptake in cultured rat skeletal myoblasts.
View Article and Find Full Text PDFAberrant processing of auditory stimuli is a prominent feature of schizophrenia (SZ). Prior studies have chronicled histological abnormalities in the auditory cortex of SZ subjects, but whether deficits exist at upstream, subcortical levels has yet to be established. En route to the auditory cortex, ascending information is integrated in the inferior colliculus (IC), a highly gamma amino butyric acid (GABA) ergic midbrain structure that is critically involved in auditory processing.
View Article and Find Full Text PDFSelenium, an essential trace element known mainly for its antioxidant properties, is critical for proper brain function and regulation of energy metabolism. Whole-body knockout of the selenium recycling enzyme, selenocysteine lyase (Scly), increases susceptibility to metabolic syndrome and diet-induced obesity in mice. Scly knockout mice also have decreased selenoprotein expression levels in the hypothalamus, a key regulator of energy homeostasis.
View Article and Find Full Text PDFSelenoproteins are a unique class of proteins that play key roles in redox signaling in the brain. This unique organ is comprised of a wide variety of cell types that includes excitatory neurons, inhibitory neurons, astrocytes, microglia, and oligodendrocytes. Whereas selenoproteins are known to be required for neural development and function, the cell-type specific expression of selenoproteins and selenium-related machinery has yet to be systematically investigated.
View Article and Find Full Text PDFSelenoproteins are an essential class of proteins involved in redox signaling and energy metabolism. However, the functions of many selenoproteins are not clearly established. Selenoprotein M (SELENOM), an endoplasmic reticulum (ER)-resident oxidoreductase bearing structural similarity to thioredoxin (TXN), is among those yet to be fully characterized.
View Article and Find Full Text PDFThe Barnes maze is a dry-land based rodent behavioral paradigm for assessing spatial learning and memory that was originally developed by its namesake, Carol Barnes. It represents a well-established alternative to the more popular Morris Water maze and offers the advantage of being free from the potentially confounding influence of swimming behavior. Herein, the Barnes maze experimental setup and corresponding procedures for testing and analysis in mice are described in detail.
View Article and Find Full Text PDFFree Radic Biol Med
November 2018
The hypothalamus is the central neural site governing food intake and energy expenditure. During the past 25 years, understanding of the hypothalamic cell types, hormones, and circuitry involved in the regulation of energy metabolism has dramatically increased. It is now well established that the adipocyte-derived hormone, leptin, acts upon two distinct groups of hypothalamic neurons that comprise opposing arms of the central melanocortin system.
View Article and Find Full Text PDFSelenium (Se) is an essential micronutrient known for its antioxidant properties and health benefits, attributed to its presence in selenoproteins as the amino acid, selenocysteine. Selenocysteine lyase (Scly) catalyzes hydrolysis of selenocysteine to selenide and alanine, facilitating re-utilization of Se for de novo selenoprotein synthesis. Previously, it was reported that male Scly mice develop increased body weight and body fat composition, and altered lipid and carbohydrate metabolism, compared to wild type mice.
View Article and Find Full Text PDFThe human selenoprotein family contains 25 members that share the common feature of containing the amino acid, selenocysteine (Sec). Seven selenoproteins are localized to the endoplasmic reticulum (ER) and exhibit different structural features contributing to a range of cellular functions. Some of these functions are either directly or indirectly related to calcium (Ca) flux or homeostasis.
View Article and Find Full Text PDFUnlabelled: Selenium (Se) is essential for both brain development and male fertility. Male mice lacking two key genes involved in Se metabolism (Scly(-/-)Sepp1(-/-) mice), selenoprotein P (Sepp1) and Sec lyase (Scly), develop severe neurological dysfunction, neurodegeneration, and audiogenic seizures that manifest beginning in early adulthood. We demonstrate that prepubescent castration of Scly(-/-)Sepp1(-/-) mice prevents behavioral deficits, attenuates neurodegeneration, rescues maturation of GABAergic inhibition, and increases brain selenoprotein levels.
View Article and Find Full Text PDFSelenoproteins are a distinct class of proteins that are characterized by the co-translational incorporation of selenium (Se) in the form of the 21st amino acid selenocysteine. Selenoproteins provide a key defense against oxidative stress, as many of these proteins participate in oxidation-reduction reactions neutralizing reactive oxygen species, where selenocysteine residues act as catalytic sites. Many selenoproteins are highly expressed in the brain, and mouse knockout studies have determined that several are required for normal brain development.
View Article and Find Full Text PDFSelenoproteins are a unique family of proteins, characterized by the co-translational incorporation of selenium as selenocysteine, which play key roles in antioxidant defense. Among selenoproteins, selenoprotein P (Sepp1) is particularly distinctive due to the fact that it contains multiple selenocysteine residues and has been postulated to act in selenium transport. Within the brain, Sepp1 delivers selenium to neurons by binding to the ApoER2 receptor.
View Article and Find Full Text PDFBackground Selenoprotein W (Sepw1) is a selenium-containing protein that is abundant in brain and muscle of vertebrate animals. Muscular expression of Sepw1 is reduced by dietary selenium (Se) deficiency in mammals, whereas brain expression is maintained. However, expression of Sepw1 depends on the Se transporter selenoprotein P (Sepp1).
View Article and Find Full Text PDFSelenium is an essential trace element that is co-translationally incorporated into selenoproteins in the form of the 21st amino acid, selenocysteine. This class of proteins largely functions in oxidation-reduction reactions and is critically involved in maintaining proper redox balance essential to health. Selenoprotein M (SelM) is a thioredoxin-like endoplasmic reticulum-resident protein that is highly expressed in the brain and possesses neuroprotective properties.
View Article and Find Full Text PDFOptimising sensory product qualities is a priority for automotive manufacturers when developing human-machine interfaces, as user experience frameworks consider sensory aesthetics to be a main influencing factor of the overall judgement of product appeal. This empirical study examines whether users' overall judgements of product appeal can be predicted from measures of non-visual aesthetic qualities. Ninety-one UK owners of Supermini segment cars assessed five examples of rotary temperature dials.
View Article and Find Full Text PDF