Adoptive T cell transfer (ACT) therapies suffer from a number of limitations (e.g., poor control of solid tumors), and while combining ACT with cytokine therapy can enhance effectiveness, this also results in significant side effects.
View Article and Find Full Text PDFNucleic acids are used in many therapeutic modalities, including gene therapy, but their ability to trigger host immune responses in vivo can lead to decreased safety and efficacy. In the case of adeno-associated viral (AAV) vectors, studies have shown that the genome of the vector activates Toll-like receptor 9 (TLR9), a pattern recognition receptor that senses foreign DNA. Here, we engineered AAV vectors to be intrinsically less immunogenic by incorporating short DNA oligonucleotides that antagonize TLR9 activation directly into the vector genome.
View Article and Find Full Text PDFProc Natl Acad Sci U S A
November 2019
Comorbidity is common as age increases, and currently prescribed treatments often ignore the interconnectedness of the involved age-related diseases. The presence of any one such disease usually increases the risk of having others, and new approaches will be more effective at increasing an individual's health span by taking this systems-level view into account. In this study, we developed gene therapies based on 3 longevity associated genes (fibroblast growth factor 21 [FGF21], αKlotho, soluble form of mouse transforming growth factor-β receptor 2 [sTGFβR2]) delivered using adeno-associated viruses and explored their ability to mitigate 4 age-related diseases: obesity, type II diabetes, heart failure, and renal failure.
View Article and Find Full Text PDFLocal drug presentation made possible by drug-eluting depots has demonstrated benefits in a vast array of diseases, including in cancer, microbial infection and in wound healing. However, locally-eluting depots are single-use systems that cannot be refilled or reused after implantation at inaccessible sites, limiting their clinical utility. New strategies to noninvasively refill drug-eluting depots could dramatically enhance their clinical use.
View Article and Find Full Text PDFSynthetic biology has focused on engineering microbes to synthesize useful products or to serve as living diagnostics and therapeutics. Here we utilize a host-derived Escherichia coli strain engineered with a genetic toggle switch as a research tool to examine in vivo replicative states in a mouse model of chronic infection, and to compare in vivo and in vitro bacterial behavior. In contrast to the effect of antibiotics in vitro, we find that the fraction of actively dividing bacteria remains relatively high throughout the course of a chronic infection in vivo and increases in response to antibiotics.
View Article and Find Full Text PDFConventional inhaled NO systems deliver NO by synchronized injection or continuous NO flow in the ventilator circuitry. Such methods can lead to variable concentrations during inspiration that may differ from desired dosing. NO concentrations in these systems are generally monitored through electrochemical methods that are too slow to capture this nuance and potential dosing error.
View Article and Find Full Text PDFBackground: The authors have previously shown that drug infusion systems with large common volumes exhibit long delays in reaching steady-state drug delivery and pharmacodynamic effects compared with smaller common-volume systems. The authors hypothesized that such delays can impede the pharmacologic restoration of hemodynamic stability.
Methods: The authors created a living swine simulator of hemodynamic instability in which occlusion balloons in the aorta and inferior vena cava (IVC) were used to manipulate blood pressure.
Background: We have previously shown that, at constant carrier flow, drug infusion systems with large dead-volumes (V) slow the time to steady-state drug delivery in vitro and pharmacodynamic effect in vivo compared to those with smaller V. In this study, we tested whether clinically relevant alterations in carrier flow generate perturbations in drug delivery and pharmacodynamic effect, and how these might be magnified when V is large.
Methods: Drug delivery in vitro or mean arterial blood pressure (MAP) and ventricular contractility (max dP/dt) in a swine model were quantified during an infusion of norepinephrine (fixed rate 3 mL/h) with a crystalloid carrier (10 mL/h).
Background: While epinephrine infusion is widely used in critical care for inotropic support, there is no direct method to detect the onset and measure the magnitude of this response. We hypothesised that surrogate measurements, such as heart rate and vascular tone, may indicate if the plasma and tissue concentrations of epinephrine and cAMP are in a range sufficient to increase myocardial contractility.
Methods: Cardiovascular responses to epinephrine infusion (0.
Clinical right ventricular (RV) impairment can occur with left ventricular assist device (LVAD) use, thereby compromising the therapeutic effectiveness. The underlying mechanism of this RV failure may be related to induced abnormalities of septal wall motion, RV distension and ischemia, decreased LV filling, and aberrations of LVAD flow. Inhaled nitric oxide (NO), a potent pulmonary vasodilator, may reduce RV afterload, and thereby increase LV filling, LVAD flow, and cardiac output (CO).
View Article and Find Full Text PDFPrior studies in small mammals have shown that local epicardial application of inotropic compounds drives myocardial contractility without systemic side effects. Myocardial capillary blood flow, however, may be more significant in larger species than in small animals. We hypothesized that bulk perfusion in capillary beds of the large mammalian heart not only enhances drug distribution after local release, but also clears more drug from the tissue target than in small animals.
View Article and Find Full Text PDFBackground: Most applications of pressure-volume conductance catheter measurements assess cardiovascular function at a single point in time after genetic, pharmacologic, infectious, nutritional, or toxicologic manipulation. Use of these catheters as a continuous monitor, however, is fraught with complexities and limitations.
Methods: Examples of the limitations and optimal use of conductance catheters as a continuous, real-time monitor of cardiovascular function are demonstrated during inotropic drug infusion in anesthetised rats.
Background: IV infusion systems can be configured with manifolds connecting multiple drug infusion lines to transcutaneous catheters. Prior in vitro studies suggest that there may be significant lag times for drug delivery to reflect changes in infusion rates set at the pump, especially with low drug and carrier flows and larger infusion system dead-volumes. Drug manifolds allow multiple infusions to connect to a single catheter port but add dead-volume.
View Article and Find Full Text PDFIt is unknown whether loss of skeletal muscle mass and function experienced by astronauts during space flight could be augmented by ionizing radiation (IR), such as low-dose high-charge and energy (HZE) particles or low-dose high-energy proton radiation. In the current study adult mice were irradiated whole-body with either a single dose of 15 cGy of 1 GeV/n ⁵⁶Fe-particle or with a 90 cGy proton of 1 GeV/n proton particles. Both ionizing radiation types caused alterations in the skeletal muscle cytoplasmic Ca²⁺ ([Ca²⁺]i) homeostasis.
View Article and Find Full Text PDFLocal drug delivery preferentially loads target tissues with a concentration gradient from the surface or point of release that tapers down to more distant sites. Drug that diffuses down this gradient must be in unbound form, but such drug can only elicit a biologic effect through receptor interactions. Drug excess loads tissues, increasing gradients and driving penetration, but with limited added biological response.
View Article and Find Full Text PDFInclusion body myositis, the most common muscle disorder in the elderly, is partly characterized by abnormal expression of amyloid precursor protein (APP) and intracellular accumulation of its proteolytic fragments collectively known as β-amyloid. The present study examined the effects of β-amyloid accumulation on mitochondrial structure and function of skeletal muscle from transgenic mice (MCK-βAPP) engineered to accumulate intramyofiber β-amyloid. Electron microscopic analysis revealed that a large fraction of myofibers from 2-3-month-old MCK-βAPP mice contained numerous, heterogeneous alterations in mitochondria, and other cellular organelles.
View Article and Find Full Text PDF