Power, and recently force-velocity (F-V) profiling, are well-researched and oft cited critical components for sports performance but both are still debated; some would say misused. A neat, applied formulation of power and linear F-V in the literature is practically useful but there is a dearth of fundamental explanations of how power and F-V interact with human and environmental constraints. To systematically explore the interactions of a linear F-V profile, peak power, gravity, mass, range of motion (ROM), and initial activation conditions, a forward dynamics point mass model of vertical jumping was parameterised from an athlete.
View Article and Find Full Text PDFBackground And Objectives: The effectiveness of exergames on fall risk and related physical and cognitive function in older adults is still unclear, with conflicting findings. The discrepancy in these results could be due to the different components and task-specific demands of individual exergame interventions. This open-label quasi-randomized study aimed to compare the efficacy of 2 different home-based dual-task exergame treatments on cognition, mobility, and balance in older people.
View Article and Find Full Text PDFThe hamstring to quadriceps (H : Q) strength ratio is widely used to identify individuals at risk of sustaining hamstring strain injuries. However, its efficacy is not supported by the current evidence. Current methods for the calculation of the H : Q ratio provide only a one- or two-dimensional ratio, often ignoring fundamental muscle mechanical properties.
View Article and Find Full Text PDFObjectives: The study aimed to analyse the association between Sports-Related Concussion (SRC) and Subsequent Musculoskeletal Injury (MSK) in United Kingdom university-aged rugby union players whilst considering the effects of sex, athlete playing position and injury location.
Design: Retrospective cohort study. A period of 365 days with 0-90, 91-180 and 181-365 days sub-periods was analysed for the following variables; MSK injury incidence, occurrence, severity, injury location, playing position and sex.
In recent years, the use of methods to investigate muscle-tendon unit function that combine motion capture with ultrasound (MoCapUS) has increased. Although several limitations and individual errors of these methods have been reported, the total error from all the potential sources together has not been estimated. The aim of this study was to establish the total error in the Achilles tendon (AT) measurements, specifically its length (ATL), strain (ATS), and moment arm (ATMA) acquired with MoCapUS during running.
View Article and Find Full Text PDFThe start in swimming is a crucial phase of a race, where improvements in performance can be made. Twenty-four elite swimmers race pace starts were recorded from five above and below water 50 Hz video cameras. Body position at toe off was calculated from the recordings and consisted of the two-dimensional mass centre position at toe off, and the arm, trunk, front leg and rear leg angles.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2021
Accurate estimates of the Achilles tendon (AT) moment arm (AT) are necessary for investigating triceps surae muscle-tendon unit loading and function. There are limited reported values of AT during running. By combining ultrasound and motion capture, AT was estimated during the stance phase of running.
View Article and Find Full Text PDFMechanical analysis at the whole human body level typically assumes limbs are rigid bodies with fixed inertial parameters, however, as the human body consists mainly of deformable soft tissue, this is not the case. The aim of this study was to investigate changes in the inertial parameters of the lower limb during landing and stamping tasks using high frequency three-dimensional motion analysis. Seven males performed active and passive drop landings from 30 and 45 cm and a stamp onto a force plate.
View Article and Find Full Text PDFComput Methods Biomech Biomed Engin
September 2019
The study examined the sensitivity of two musculoskeletal models to the parameters describing each model. Two different models were examined: a phenomenological model of human jumping with parameters based on live subject data, and the second a model of the First Dorsal Interosseous with parameters based on cadaveric measurements. Both models were sensitive to the model parameters, with the use of mean group data not producing model outputs reflective of either the performance of any group member or the mean group performance.
View Article and Find Full Text PDFThis study investigated the influence of contraction speed and type on the human ability to rapidly increase torque and utilise the available maximum voluntary torque (MVT) as well as the neuromuscular mechanisms underpinning any effects. Fifteen young, healthy males completed explosive voluntary knee extensions in five conditions: isometric (ISO), and both concentric and eccentric at two constant accelerations of 500 deg s (CON and ECC) and 2000 deg s (CON and ECC). Explosive torque and quadriceps EMG were recorded every 25 ms up to 150 ms from their respective onsets and normalised to the available MVT and EMG at MVT, respectively, specific to that joint angle and velocity.
View Article and Find Full Text PDFDespite full voluntary effort, neuromuscular activation of the quadriceps group of muscles appears inhibited during eccentric contractions. A nerve stimulation protocol during dynamic contractions of the quadriceps was developed that employed triplets of supramaximal pulses to assess suppressed eccentric activation. Subsequently the effects of a short training intervention, performed on a dynamometer, on eccentric strength output and neural inhibition were examined.
View Article and Find Full Text PDFDespite uncertainty of its exact role, muscle tension has shown an ability to alter human biomechanical response and may have the ability to reduce impact injury severity. The aim of this study was to examine the effects of muscle tension on human impact response in terms of force and energy absorbed and the subjects' perceptions of pain. Seven male martial artists had a 3.
View Article and Find Full Text PDFInsights into sensorimotor control of balance were examined by the assessment of perturbed and unperturbed balance in standing and handstand postures. During perturbed and unperturbed balance in standing, the most prevalent control strategy was an ankle strategy, which was employed for more than 90% of the time in balance. During perturbed and unperturbed balance in handstand, the most prevalent control strategy was a wrist strategy, which was employed for more than 75% of the time in balance.
View Article and Find Full Text PDFSpeed of movement is fundamental to the outcome of many human actions. A variety of techniques can be implemented in order to maximise movement speed depending on the goal of the movement, constraints, and the time available. Knowing maximum movement velocities is therefore useful for developing movement strategies but also as input into muscle models.
View Article and Find Full Text PDFHamstrings muscle fiber composition may be predominantly fast-twitch and could explain the high incidence of hamstrings strain injuries. However, hamstrings muscle composition in vivo, and its influence on knee flexor muscle function, remains unknown. We investigated biceps femoris long head (BFlh) myosin heavy chain (MHC) composition from biopsy samples, and the association of hamstrings composition and hamstrings muscle volume (using MRI) with knee flexor maximal and explosive strength.
View Article and Find Full Text PDFFeedback delays in balance are often assessed using muscle activity onset latencies in response to discrete perturbations. The purpose of the study was to calculate EMG latencies in perturbed handstand, and determine if delays are different to unperturbed handstand. Twelve national level gymnasts completed 12 perturbed and 10 unperturbed (five eyes open and five closed) handstands.
View Article and Find Full Text PDFPurpose: This study examined the association of muscle size and strength for the quadriceps and hamstrings, the relationship between the size of these muscles, and whether the H:Q size ratio influenced reciprocal strength balance-widely regarded as a risk factor for hamstrings injury.
Methods: Knee extensor and flexor isometric, concentric and eccentric (50 and 350° s(-1)) strength were measured in 31 healthy, recreationally active young men. Muscle volume was measured with magnetic resonance imaging.
The aim of this study was to establish how well a three-parameter sigmoid exponential function, DIFACT, follows experimentally obtained voluntary neural activation-angular velocity profiles and how robust it is to perturbed levels of maximal activation. Six male volunteers (age 26.3±2.
View Article and Find Full Text PDFPurpose: A disproportionately small biceps femoris long head (BFlh) proximal aponeurosis has been suggested as a risk factor for hamstring strain injury by concentrating mechanical strain on the surrounding muscle tissue. However, the size of the BFlh aponeurosis relative to BFlh muscle size, or overall knee flexor strength, has not been investigated. This study aimed to examine the relationship of BFlh proximal aponeurosis area with muscle size (maximal anatomical cross-sectional area (ACSAmax)) and knee flexor strength (isometric and eccentric).
View Article and Find Full Text PDFBilateral deficit is well documented; however, bilateral deficit is not present in all tasks and is more likely in dynamic activities than isometric activities. No definitive mechanism(s) for bilateral deficit is known but an oft cited mechanism is lower activation of fast twitch motor units. The aim of this study was to produce comparable and consistent one and two legged drop jumps to examine bilateral deficit in elite power athletes and elite endurance athletes.
View Article and Find Full Text PDFIt is currently unclear how football participation affects knee-joint muscle balance, which is widely considered a risk factor for hamstrings injury. This study compared the angle-specific functional hamstring-to-quadriceps (H:Q) ratio (hamstrings eccentric torque as a ratio of quadriceps concentric torque at the same knee-joint angle) of football players with recreationally active controls. Ten male footballers and 14 controls performed maximal voluntary isometric and isovelocity concentric and eccentric contractions (60, 240 and 400° s(-1)) of the knee extensors and flexors.
View Article and Find Full Text PDFThis study aimed to investigate the contributions of kinetic and kinematic parameters to inter-individual variation in countermovement jump (CMJ) performance. Two-dimensional kinematic data and ground reaction forces during a CMJ were recorded for 18 males of varying jumping experience. Ten kinetic and eight kinematic parameters were determined for each performance, describing peak lower-limb joint torques and powers, concentric knee extension rate of torque development and CMJ technique.
View Article and Find Full Text PDFThe study aimed to assess the influence of fatigue induced by repeated high-force explosive contractions on explosive and maximal isometric strength of the human knee extensors and to examine the neural and contractile mechanisms for the expected decrement. Eleven healthy untrained males completed 10 sets of voluntary maximal explosive contractions (five times 3 s, interspersed with 2 s rest). Sets were separated by 5 s, during which supramaximal twitch and octet contractions [eight pulses at 300 Hz that elicit the contractile peak rate of force development (pRFD)] were evoked.
View Article and Find Full Text PDF