J Am Soc Mass Spectrom
February 2021
Cycloidal sector mass analyzers have, in principle, perfect focusing due to perpendicularly oriented uniform electric and magnetic fields, making them ideal candidates for incorporation of spatially coded apertures. We have previously demonstrated a proof-of-concept cycloidal-coded aperture miniature mass spectrometer (C-CAMMS) instrument and achieved a greater than 10-fold increase in throughput without sacrificing resolution, compared with a single slit instrument. However, artifacts were observed in the reconstructed mass spectrum due to nonuniformity in the electric field and misalignment of the detector and the ion source with the mass analyzer focal plane.
View Article and Find Full Text PDFDespite many potential applications, miniature mass spectrometers have had limited adoption in the field due to the tradeoff between throughput and resolution that limits their performance relative to laboratory instruments. Recently, a solution to this tradeoff has been demonstrated by using spatially coded apertures in magnetic sector mass spectrometers, enabling throughput and signal-to-background improvements of greater than an order of magnitude with no loss of resolution. This paper describes a proof of concept demonstration of a cycloidal coded aperture miniature mass spectrometer (C-CAMMS) demonstrating use of spatially coded apertures in a cycloidal sector mass analyzer for the first time.
View Article and Find Full Text PDF