The accurate registration and realignment of complex signal volumes is critical for cross-range aperture gain in 3D LiDAR aperture synthesis. For targets at long range, only a limited number of diffraction-limited pixels will be projected on the target, resulting in low cross-range support. In addition, the signal-to-noise ratio (SNR) is typically low.
View Article and Find Full Text PDFThis paper describes a multi-static interferometric synthetic aperture ladar (IFSAL) for high-resolution, high-precision 3D imaging. Code division multiple access apertures with periodic, pseudorandom noise waveforms are used to create aperture diversity and overcome the ambiguity associated with the aperture separation requirements for interferometric synthetic aperture ladar. The basic theory for mapping relative aperture phase to a high-precision elevation profile is derived for a multi-static IFSAL system and subsequent processing steps are presented.
View Article and Find Full Text PDFJ Opt Soc Am A Opt Image Sci Vis
October 2017
This paper utilizes a combination of theory and simulations to examine synthetic aperture imaging across a wide range of turbulence conditions. Extensive wave optics simulations are used to validate existing theory and to investigate the use of a common measurement technique. It demonstrates the applicability of earlier synthetic aperture laser radar (ladar) (SAL) research across a wide range of turbulence conditions, and examines the metric approaches and limitations for the imaging conditions normally seen in practical SAL systems.
View Article and Find Full Text PDFWe investigate the use of a semiconductor optical amplifier operated in the saturation regime as a phase modulator for long range laser radar applications. The nature of the phase and amplitude modulation resulting from a high peak power Gaussian pulse, and the impact this has on the ideal pulse response of a laser radar system, is explored. We also present results of a proof-of-concept laboratory demonstration using phase-modulated pulses to interrogate a stationary target.
View Article and Find Full Text PDFHolographic aperture ladar (HAL) is a variant of synthetic aperture ladar (SAL). The two processes are related in that they both seek to increase cross-range (i.e.
View Article and Find Full Text PDFWe present the results of an experiment designed to verify the results of a previously published theoretical model that predicts the range resolution and peak-to-side lobe ratio of sparse frequency linearly frequency modulated (SF-LFM) ladar signals. We use two ultra stable diode lasers which are frequency locked and can be current tuned in order to adjust the difference frequency between the two lasers. The results of the experiment verify the previously developed model proving that SF-LFM ladar signals have the ability to increase the range resolution of a ladar system without the need for larger bandwidth modulators.
View Article and Find Full Text PDFBy synthesizing large effective apertures through the translation of a smaller imaging sensor and the subsequent proper phasing and correlation of detected signals in postprocessing, holographic aperture ladar (HAL) systems seek to increase the resolution of remotely imaged targets. The stripmap HAL process was demonstrated in the laboratory, for the first time to our knowledge. Our results show that the stripmap HAL transformation can precisely account for off-axis transmitter induced phase migrations.
View Article and Find Full Text PDFWe report the use of periodic, pseudonoise waveforms in a multifunction coherent ladar system. We exploit the Doppler sensitivity of these waveforms, as well as agile processing, to enable diverse ladar functions, including high range resolution imaging, macro-Doppler imaging, synthetic aperture ladar, and range-resolved micro-Doppler imaging. We present analytic expressions and simulations demonstrating the utility of pseudonoise waveforms for each of the ladar modes.
View Article and Find Full Text PDFDetecting objects hidden beneath forest canopies is a difficult task for optical remote sensing systems. Rather than relying upon the existence of gaps between leaves, as other researchers have done, our ultimate goal is to use light scattered by leaves to image through dense foliage. Herein we describe the development of a Monte Carlo model for simulating the scattering of light as it propagates through the leaves of an extended tree canopy.
View Article and Find Full Text PDFThrough modeling we explored the possibility of utilizing a sparse frequency linear frequency modulation (LFM) signal for laser radar (ladar) applications. We propose a potential transmit and receive experiment utilizing the superposition of two LFM laser sources with a known difference frequency to provide the necessary segmented bandwidth. Finally we analyzed the signal performance of the proposed system showing that the range resolution of the signal can be improved by two to three times while utilizing the same modulator bandwidth as that of a continuous LFM signal.
View Article and Find Full Text PDFHolographic aperture ladar is a variant of synthetic aperture ladar that seeks to increase cross-range scene resolution by synthesizing a large effective aperture through the motion of a smaller receiver and through the subsequent proper phasing and correlation of the detected signals in postprocessing. Unlike in conventional synthetic aperture ladar, however, holographic aperture ladar makes use of a two-dimensional translating sensor array, not simply a translating point detector. Also unlike in conventional synthetic aperture ladar, holographic aperture images will be formed in the two orthogonal cross-range dimensions parallel and perpendicular to the sensor platform's direction of motion.
View Article and Find Full Text PDFWe present our investigations into the optical scattering properties of both sugar maple (Acer saccarum) and eastern cottonwood (Populus deltoides) leaves in the near-IR wavelength regime. The bidirectional scattering distribution function (BSDF) describes the fractions of light reflected by and transmitted through a leaf for a given set of illumination and observation angles. Experiments were performed to measure the BSDF of each species at a discrete set of illumination and observation angles.
View Article and Find Full Text PDFThe resolution of a conventional diffraction-limited imaging system is proportional to its pupil diameter. A primary goal of sparse aperture imaging is to enhance resolution while minimizing the total light collection area; the latter being desirable, in part, because of the cost of large, monolithic apertures. Performance metrics are defined and used to evaluate several sparse aperture arrays constructed from multiple, identical, circular subapertures.
View Article and Find Full Text PDF