Publications by authors named "Matthew P DeBerge"

Elevated levels of solTNFR2 are observed in a variety of human pathophysiological conditions but regulation of TNFR2 levels during disease is not well understood. We found that solTNFR2 levels were increased following influenza infection or live-attenuated influenza virus challenge in mice and humans, respectively. As influenza-specific CD8(+) T cells up-regulated expression of TNFR2 after infection in mice, we hypothesized that CD8(+) T cells contributed, in part, to solTNFR2 production after influenza infection and were interested in the mechanisms by which CD8(+) T cells regulate TNFR2 shedding.

View Article and Find Full Text PDF

Influenza infection results in considerable pulmonary pathology, a significant component of which is mediated by CD8(+) T cell effector functions. To isolate the specific contribution of CD8(+) T cells to lung immunopathology, we utilized a nonviral murine model in which alveolar epithelial cells express an influenza antigen and injury is initiated by adoptive transfer of influenza-specific CD8(+) T cells. We report that IFN-γ production by adoptively transferred influenza-specific CD8(+) T cells is a significant contributor to acute lung injury following influenza antigen recognition, in isolation from its impact on viral clearance.

View Article and Find Full Text PDF

Virus infection triggers a CD8(+) T cell response that aids in virus clearance, but also expresses effector functions that may result in tissue injury. CD8(+) T cells express a variety of activating and inhibiting ligands, though regulation of the expression of inhibitory receptors is not well understood. The ligand for the inhibitory receptor, NKG2A, is the non-classical MHC-I molecule Qa1(b), which may also serve as a putative restricting element for the T cell receptors of purported regulatory CD8(+) T cells.

View Article and Find Full Text PDF

TNF-α is a pleotropic cytokine that has both proinflammatory and anti-inflammatory functions during influenza infection. TNF-α is first expressed as a transmembrane protein that is proteolytically processed to release a soluble form. Transmembrane TNF-α (memTNF-α) and soluble TNF-α (solTNF-α) have been shown to exert distinct tissue-protective or tissue-pathologic effects in several disease models.

View Article and Find Full Text PDF

Influenza infection in humans evokes a potent CD8(+) T-cell response, which is important for clearance of the virus but may also exacerbate pulmonary pathology. We have previously shown in mice that CD8(+) T-cell expression of TNF-α is required for severe and lethal lung injury following recognition of an influenza antigen expressed by alveolar epithelial cells. Since TNF-α is first expressed as a transmembrane protein that is then proteolytically processed to release a soluble form, we sought to characterize the role of TNF-α processing in CD8(+) T-cell-mediated injury.

View Article and Find Full Text PDF