Haematopoietic stem cell transplantation (HSCT) remains the only cure for most haematological malignancies, however, the mortality rate remains high. Complications after HSCT include relapse, graft versus host disease (GvHD), graft rejection and infection. Over the last few years several groups, have demonstrated that non-HLA gene polymorphisms can be predictive of outcome after HSCT.
View Article and Find Full Text PDFBackground: Allogeneic hematopoietic cell transplantation is the main curative therapy for patients with chronic myeloid leukemia who do not respond to tyrosine kinase inhibitors. It has been proposed that non-human leukocyte antigen gene polymorphisms influence outcome after hematopoietic cell transplantation and could be used alongside traditional patient-donor and transplant characteristics to create a recipient risk profile associated with allogeneic hematopoietic cell transplantation.
Design And Methods: A previous study from the European Group for Blood and Marrow Transplantation showed that the absence of recipient tumor necrosis factor receptor II, absence of donor interleukin 10 ATA/ACC and presence of donor interleukin 1 receptor antagonist allele 2 genotypes were associated with decreased survival and increased non-relapse mortality in adult patients with chronic myeloid leukemia undergoing myeloablative human leukocyte antigen-identical sibling transplantation.
Background: Graft-versus-host disease (GVHD) is an important complication occurring after hematopoietic stem-cell transplantation (HSCT). Animal model studies have shown the involvement of the Fas (APO-1/CD95)/Fas-Ligand pathway in GVHD pathogenesis, but its association with cutaneous GVHD in human remains to be established.
Methods: In the present study, Fas involvement in skin damage was assessed using a human skin explant model of GVHD.
Background: Despite the promising therapeutic potential of regulatory T cells (Treg) in animal studies of graft-versus-host disease (GVHD), little is known about their effect on human GVHD. Whether Treg are capable of ameliorating GVHD tissue damage has never been demonstrated in humans. It is also unknown whether Treg modulation of GVH histopathologic damage relies on their presence during effector T-cell priming, or whether allogeneic Treg are safe to use clinically.
View Article and Find Full Text PDFChronic granulomatous disease (CGD) causes recurrent infection and inflammatory disease. Despite antimicrobial prophylaxis, patients experience frequent hospitalisations and 50% mortality by 30 years. Haematopoietic stem cell transplantation (HSCT) can cure CGD with resolution of infection and colitis.
View Article and Find Full Text PDFMesenchymal stem cells are adherent stromal cells, initially isolated from the bone marrow, characterized by their ability to differentiate into mesenchymal tissues such as bone, cartilage and fat. They have also been shown to suppress immune responses in vitro. Because of these properties, mesenchymal stem cells have recently received a very high profile.
View Article and Find Full Text PDFLangerin is a C-type lectin receptor that recognizes glycosylated patterns on pathogens. Langerin is used to identify human and mouse epidermal Langerhans cells (LCs), as well as migratory LCs in the dermis and the skin draining lymph nodes (DLNs). Using a mouse model that allows conditional ablation of langerin(+) cells in vivo, together with congenic bone marrow chimeras and parabiotic mice as tools to differentiate LC- and blood-derived dendritic cells (DCs), we have revisited the origin of langerin(+) DCs in the skin DLNs.
View Article and Find Full Text PDFLentivectors stimulate potent immune responses to antigen transgenes and are being developed as novel genetic vaccines. To improve safety while retaining efficacy, we constructed a lentivector in which transgene expression was restricted to antigen-presenting cells using the mouse dectin-2 gene promoter. This lentivector expressed a green fluorescent protein (GFP) transgene in mouse bone marrow-derived dendritic cell cultures and in human skin-derived Langerhans and dermal dendritic cells.
View Article and Find Full Text PDFBone marrow mesenchymal stem cells (MSC) have potent immunosuppressive properties and have been advocated for therapeutic use in humans. The nature of their suppressive capacity is poorly understood but is said to be a primitive stem cell function. Demonstration that adult stromal cells such as fibroblasts (Fb) can modulate T cells would have important implications for immunoregulation and cellular therapy.
View Article and Find Full Text PDFCD1a, an antigen-presenting molecule related to major histocompatibility complex (MHC) class I, is frequently described as nonpolymorphic. In humans it is dimorphic, due to two linked amino acid substitutions in the alpha1 domain (Ile13Thr and Trp51Cys). The CD1a gene on chromosome 1 is not linked to MHC and may be mismatched between human leukocyte antigen-identical siblings.
View Article and Find Full Text PDFLangerhans cells (LC) and other antigen-presenting cells are believed to be critical in initiating graft versus host responses that influence the outcome of allogeneic hematopoietic stem cell transplantation. However, their fate in humans is poorly understood. We have sought to define the effect of conditioning regimes and graft versus host disease (GVHD) on the survival of recipient LC and reconstitution of donor cells after transplant.
View Article and Find Full Text PDFGraft-versus-host disease (GvHD), a life-threatening complication of bone marrow transplantation, is initiated by donor T cells reacting to recipient dendritic cells (DC). GvHD can be controlled by attenuating donor T cells, but few strategies exist to target DC, particularly resident tissue DC, despite recent evidence of their importance. In this report, CMRF-44, a mouse monoclonal IgM reactive to human DC, is tested against human Langerhans cells (LC) in vitro.
View Article and Find Full Text PDF