The study of 3D magnetic nanostructures has uncovered rich phenomena including the stabilization of topological spin textures using nanoscale curvature, controlled spin-wave emission, and novel ground states enabled by collective frustrated interactions. From a technological perspective, 3D nanostructures offer routes to ultrahigh density data storage, massive interconnectivity within neuromorphic devices, as well as mechanical induction of stem cell differentiation. However, the fabrication of 3D nanomagnetic systems with feature sizes down to 10 nm poses a significant challenge.
View Article and Find Full Text PDFCylindrical magnetic nanowires have been shown to exhibit a vast array of fascinating spin textures, including chiral domains, skyrmion tubes, and topologically protected domain walls that harbor Bloch points. Here, we present a novel methodology that utilizes two-photon lithography in order to realize tailored three-dimensional (3D) porous templates upon prefabricated electrodes. Electrochemical deposition is used to fill these porous templates, and reactive ion etching is used to free the encased magnetic nanowires.
View Article and Find Full Text PDF