This work shows the first example of using intramolecular London dispersion interactions to control molecular geometry and quantum transport in single-molecule junctions. Flexible σ-bonded molecular junctions typically occupy straight-chain geometries due to steric effects. Here, we synthesize a series of thiomethyl-terminated oligo(dimethylsilmethylene)s that bear [CH-Si(CH)] repeat units, where all backbone dihedral states are sterically equivalent.
View Article and Find Full Text PDFThis manuscript describes skeletal isomerization strategies to install one to four quaternary germanium atoms in the sila-adamantane core, in a cluster analogy to precision germanium doping in silicon-germanium alloys. The first strategy embodies an inorganic variant of single-atom skeletal editing, where we use a sila-Wagner-Meerwein bond shift cascade to exchange a peripheral Ge atom with a core Si atom. We can install up to four Ge atoms at the quaternary diamondoid centers based on controlling the SiGe stoichiometry of our precursor.
View Article and Find Full Text PDFThis article reviews the scope of inorganic cluster compounds interrogated in single-molecule break-junction measurements. This body of work lies at the intersection between the fields of inorganic cluster chemistry and single-molecule electronics, where discrete inorganic cluster molecules are used as the active components in molecular electronic circuitry. We explore the breadth of transition metal and main group cluster compounds that have been studied in single-cluster junctions, largely within the context of scanning tunnelling microscopy break-junction (STM-BJ) measurements.
View Article and Find Full Text PDF