LEAFY COTYLEDON1 (LEC1), an atypical subunit of the nuclear transcription factor Y (NF-Y) CCAAT-binding transcription factor, is a central regulator that controls many aspects of seed development including the maturation phase during which seeds accumulate storage macromolecules and embryos acquire the ability to withstand desiccation. To define the gene networks and developmental processes controlled by LEC1, genes regulated directly by and downstream of LEC1 were identified. We compared the mRNA profiles of wild-type and -null mutant seeds at several stages of development to define genes that are down-regulated or up-regulated by the mutation.
View Article and Find Full Text PDFAging causes cardiac dysfunction, often leading to heart failure and death. The molecular basis of age-associated changes in cardiac structure and function is largely unknown. The fruit fly, Drosophila melanogaster, is well-suited to investigate the genetics of cardiac aging.
View Article and Find Full Text PDFSummary: We have developed a web-based query tool, Whole-Genome rVISTA (WGRV), that determines enrichment of transcription factors (TFs) and associated target genes in sets of co-regulated genes. WGRV enables users to query databases containing pre-computed genome coordinates of evolutionarily conserved transcription factor binding sites in the proximal promoters (from 100 bp to 5 kb upstream) of human, mouse and Drosophila genomes. TF binding sites are based on position-weight matrices from the TRANSFAC Professional database.
View Article and Find Full Text PDFSeeds are complex structures that consist of the embryo, endosperm, and seed-coat regions that are of different ontogenetic origins, and each region can be further divided into morphologically distinct subregions. Despite the importance of seeds for food, fiber, and fuel globally, little is known of the cellular processes that characterize each subregion or how these processes are integrated to permit the coordinated development of the seed. We profiled gene activity genome-wide in every organ, tissue, and cell type of Arabidopsis seeds from fertilization through maturity.
View Article and Find Full Text PDF